Skip to main content
Log in

The impact of Nrf2/HO-1, caspase-3/Bax/Bcl2 and ATF6/IRE1/PERK/GRP78 signaling pathways in the ameliorative effects of morin against methotrexate-induced testicular toxicity in rats

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Methotrexate (MT) is a broadly used chemotherapeutic drug however its clinical use is confronted with several forms of toxicities containing testicular damage. The current study assessed the ameliorative effects of morin on MT-induced testicular damage with the investigation of its mechanism and the potential involvement of oxidative stress, inflammation, apoptosis and endoplasmic reticulum stress in such protection.

Methods

The animals were divided into 5 distinct groups (7 rats in each group). Group 1 was control group, group 2 received MT-only (20 mg/kg bw), group 3 received orally morin-only (100 mg/kg bw), group 4 received MT (20 mg/kg bw) + morin (50 mg/kg bw) and group 5 received MT (20 mg/kg bw) + morin (100 mg/kg). In this study, morin was administered orally for 10 days, while MT was administered intraperitoneally on the 5th day.

Results

MT intoxication was linked with augmented MDA while decreased GSH levels, the enzyme activities of glutathione peroxidase, superoxide dismutase, and catalase and mRNA levels of HO-1 and Nrf2 in the testis tissues. MT injection caused inflammation in the testicular tissue via up-regulation of MAPK14, NFκB, TNF-α and IL-1β. MT application also caused apoptosis and endoplasmic reticulum stress in the testis tissue via increasing mRNA transcript levels of Bax, caspase-3, PERK, IRE1, ATF-6, GRP78 and down-regulation of Bcl-2.

Conclusion

Treatment with morin at a dose of 50 and 100 mg/kg considerably mitigated oxidative stress, inflammation, apoptosis and endoplasmic reticulum stress in the testicular tissue indicating that testicular damage related to MT toxicity could be modulated by morin administration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, [Cuneyt Caglayan], upon reasonable request.

References

  1. Huang X, Fang Q, Rao T, Zhou L, Zeng X, Tan Z et al (2020) Leucovorin ameliorated methotrexate induced intestinal toxicity via modulation of the gut microbiota. Toxicol Appl Pharmcol 391:114900

    Article  CAS  Google Scholar 

  2. Kandemir FM, Kucukler S, Caglayan C, Gur C, Batil AA, Gülçin İ (2017) Therapeutic effects of silymarin and naringin on methotrexate-induced nephrotoxicity in rats: Biochemical evaluation of anti-inflammatory, antiapoptotic, and antiautophagic properties. J Food Biochem 41(5):e12398

    Article  Google Scholar 

  3. Ozturk E, Karabulut D, Akin AT, Kaymak E, Kuloglu N, Yakan B (2022) Evaluation by different mechanisms of the protective effects of vitamin B12 on methotrexate nephrotoxicity. J Mol Histol 53(1):133–143

    Article  CAS  PubMed  Google Scholar 

  4. Hess JA, Khasawneh MK (2015) Cancer metabolism and oxidative stress: Insights into carcinogenesis and chemotherapy via the non-dihydrofolate reductase effects of methotrexate. BBA Clin 3:152–161

    Article  PubMed  PubMed Central  Google Scholar 

  5. Li Y, Gao M, Yin LH, Xu LN, Qi Y, Sun P et al (2021) Dioscin ameliorates methotrexate-induced liver and kidney damages via adjusting miRNA-145-5p-mediated oxidative stress. Free Radic Biol Med 169:99–109

    Article  CAS  PubMed  Google Scholar 

  6. Famurewa AC, Aja PM, Nwankwo OE, Awoke JN, Maduagwuna EK, Aloke C (2019) Moringa oleifera seed oil or virgin coconut oil supplementation abrogates cerebral neurotoxicity induced by antineoplastic agent methotrexate by suppression of oxidative stress and neuro-inflammation in rats. J Food Biochem 43(3):e12748

    PubMed  Google Scholar 

  7. Delen O, Uz YH (2021) Protective effect of pyrrolidine dithiocarbamate against methotrexate-induced testicular damage. Hum Exp Toxicol 40(12suppl):S164–S77

    Article  CAS  PubMed  Google Scholar 

  8. Ceylan H, Demir Y, Beydemir Ş (2019) Inhibitory Effects of Usnic and Carnosic Acid on Some Metabolic Enzymes: An In vitro Study. Protein Pept Lett 26(5):364–370

    Article  CAS  PubMed  Google Scholar 

  9. Dias MC, Pinto DCGA, Silva AMS (2021) Plant Flavonoids: Chemical Characteristics and Biological Activity.Molecules. ; 26(17)

  10. Kucukler S, Caglayan C, Darendelioğlu E, Kandemir FM (2020) Morin attenuates acrylamide-induced testicular toxicity in rats by regulating the NF-κB, Bax/Bcl-2 and PI3K/Akt/mTOR signaling pathways. Life Sci 261:118301

    Article  CAS  PubMed  Google Scholar 

  11. Kuzu M, Kandemir FM, Yildirim S, Kucukler S, Caglayan C, Turk E (2018) Morin attenuates doxorubicin-induced heart and brain damage by reducing oxidative stress, inflammation and apoptosis. Biomed Pharmacother 106:443–453

    Article  CAS  PubMed  Google Scholar 

  12. Kandemir FM, Yıldırım S, Kucukler S, Caglayan C, Darendelioğlu E, Dortbudak MB (2020) Protective effects of morin against acrylamide-induced hepatotoxicity and nephrotoxicity: A multi-biomarker approach. Food Chem Toxicol 138:111190

    Article  CAS  PubMed  Google Scholar 

  13. Rajput SA, Wang X-q, Yan H-C (2021) Morin hydrate: A comprehensive review on novel natural dietary bioactive compound with versatile biological and pharmacological potential. Biomed Pharmacother 138:111511

    Article  CAS  PubMed  Google Scholar 

  14. Çelik H, Kucukler S, Çomaklı S, Özdemir S, Caglayan C, Yardım A et al (2020) Morin attenuates ifosfamide-induced neurotoxicity in rats via suppression of oxidative stress, neuroinflammation and neuronal apoptosis. Neurotoxicology 76:126–137

    Article  PubMed  Google Scholar 

  15. Kuzu M, Yıldırım S, Kandemir FM, Küçükler S, Çağlayan C, Türk E et al (2019) Protective effect of morin on doxorubicin-induced hepatorenal toxicity in rats. Chemico-Biol Interact 308:89–100

    Article  CAS  Google Scholar 

  16. Gur C, Kandemir FM, Darendelioglu E, Caglayan C, Kucukler S, Kandemir O et al (2021) Morin protects against acrylamide-induced neurotoxicity in rats: an investigation into different signal pathways. Environmental Science and Pollution Research

  17. Merwid-Ląd A, Ksiądzyna D, Hałoń A, Szkudlarek D, Trocha M, Szandruk-Bender M et al (2021) Morin-5′-Sulfonic Acid Sodium Salt (NaMSA) Attenuates Cyclophosphamide-Induced Histological Changes in Genitourinary Tract in Rats—Short Report.Pharmaceuticals. ; 14(3)

  18. Hassanein EHM, Shalkami A-GS, Khalaf MM, Mohamed WR, Hemeida RAM (2019) The impact of Keap1/Nrf2, P38MAPK/NF-κB and Bax/Bcl2/caspase-3 signaling pathways in the protective effects of berberine against methotrexate-induced nephrotoxicity. Biomed Pharmacother 109:47–56

    Article  CAS  PubMed  Google Scholar 

  19. Placer ZA, Cushman LL, Johnson BC (1966) Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Anal Biochem 16(2):359–364

    Article  CAS  PubMed  Google Scholar 

  20. Sun Y, Oberley LW, Li Y (1988) A simple method for clinical assay of superoxide dismutase. Clin Chem 34(3):497–500

    Article  CAS  PubMed  Google Scholar 

  21. Aebi H (1984) [13] Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  22. Lawrence RA, Burk RF (1976) Glutathione peroxidase activity in selenium-deficient rat liver. Biochem Biophys Res Commun 71(4):952–958

    Article  CAS  PubMed  Google Scholar 

  23. Sedlak J, Lindsay RH (1968) Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem 25(1):192–205

    Article  CAS  PubMed  Google Scholar 

  24. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    Article  CAS  PubMed  Google Scholar 

  25. Bedoui Y, Guillot X, Sélambarom J, Guiraud P, Giry C, Jaffar-Bandjee MC et al (2019) Methotrexate an Old Drug with New Tricks.International Journal of Molecular Sciences. ; 20(20)

  26. Wang W, Zhou H, Liu L (2018) Side effects of methotrexate therapy for rheumatoid arthritis: A systematic review. Eur J Med Chem 158:502–516

    Article  CAS  PubMed  Google Scholar 

  27. Nita M, Grzybowski A (2016) The Role of the Reactive Oxygen Species and Oxidative Stress in the Pathomechanism of the Age-Related Ocular Diseases and Other Pathologies of the Anterior and Posterior Eye Segments in Adults. Oxidative Med Cell Longev 2016:3164734

    Article  Google Scholar 

  28. Demir Y (2020) Naphthoquinones, benzoquinones, and anthraquinones: Molecular docking, ADME and inhibition studies on human serum paraoxonase-1 associated with cardiovascular diseases. Drug Dev Res 81(5):628–636

    Article  CAS  PubMed  Google Scholar 

  29. Gharagozloo P, Aitken RJ (2011) The role of sperm oxidative stress in male infertility and the significance of oral antioxidant therapy. Hum Reprod 26(7):1628–1640

    Article  PubMed  Google Scholar 

  30. Heidari Khoei H, Fakhri S, Parvardeh S, Shams Mofarahe Z, Baninameh Z, Vardiani M (2019) Astaxanthin prevents the methotrexate-induced reproductive toxicity by targeting oxidative stress in male mice. Toxin Reviews 38(3):248–254

    Article  CAS  Google Scholar 

  31. Felemban SG, Aldubayan MA, Alhowail AH, Almami IS (2020) Vitamin B17 Ameliorates Methotrexate-Induced Reproductive Toxicity, Oxidative Stress, and Testicular Injury in Male Rats. Oxidative Med Cell Longev 2020:4372719

    Article  Google Scholar 

  32. Olayinka ET, Adewole KE (2021) Ameliorative effect of morin on dutasteride-tamsulosin-induced testicular oxidative stress in rat. J Complement Integr Med 18(2):327–337

    Article  CAS  Google Scholar 

  33. Olayinka ET, Ore A, Adeyemo OA, Ola OS (2018) The role of flavonoid antioxidant, morin in improving procarbazine-induced oxidative stress on testicular function in rat. Porto biomedical journal 4(1):e28–e

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wang Y, Zhao T, Zhao H, Wang H (2018) Melatonin protects methotrexate-induced testicular injury in rats. Eur Rev Med Pharmacol Sci 22(21):7517–7525

    CAS  PubMed  Google Scholar 

  35. Morsy MA, Abdel-Aziz AM, Abdel-Hafez SMN, Venugopala KN, Nair AB, Abdel-Gaber SA (2020) The Possible Contribution of P-Glycoprotein in the Protective Effect of Paeonol against Methotrexate-Induced Testicular Injury in Rats.Pharmaceuticals. ; 13(9)

  36. Cuadrado A, Nebreda Angel R (2010) Mechanisms and functions of p38 MAPK signalling. Biochem J 429(3):403–417

    Article  CAS  PubMed  Google Scholar 

  37. Song C, Heping H, Shen Y, Jin S, Li D, Zhang A et al (2020) AMPK/p38/Nrf2 activation as a protective feedback to restrain oxidative stress and inflammation in microglia stimulated with sodium fluoride. Chemosphere 244:125495

    Article  CAS  PubMed  Google Scholar 

  38. Yardım A, Kandemir FM, Çomaklı S, Özdemir S, Caglayan C, Kucukler S et al (2021) Protective Effects of Curcumin Against Paclitaxel-Induced Spinal Cord and Sciatic Nerve Injuries in Rats. Neurochem Res 46(2):379–395

    Article  PubMed  Google Scholar 

  39. Mahmoud AM, Hussein OE, Hozayen WG, Bin-Jumah M, Abd El-Twab SM (2020) Ferulic acid prevents oxidative stress, inflammation, and liver injury via upregulation of Nrf2/HO-1 signaling in methotrexate-induced rats. Environ Sci Pollut Res 27(8):7910–7921

    Article  CAS  Google Scholar 

  40. Hussein OE, Hozayen WG, Bin-Jumah MN, Germoush MO, Abd El-Twab SM, Mahmoud AM (2020) Chicoric acid prevents methotrexate hepatotoxicity via attenuation of oxidative stress and inflammation and up-regulation of PPARγ and Nrf2/HO-1 signaling. Environ Sci Pollut Res 27(17):20725–20735

    Article  CAS  Google Scholar 

  41. Küçükler S, Çomaklı S, Özdemir S, Çağlayan C, Kandemir FM (2021) Hesperidin protects against the chlorpyrifos-induced chronic hepato-renal toxicity in rats associated with oxidative stress, inflammation, apoptosis, autophagy, and up-regulation of PARP-1/VEGF. Environ Toxicol 36(8):1600–1617

    Article  PubMed  Google Scholar 

  42. Carneiro BA, El-Deiry WS (2020) Targeting apoptosis in cancer therapy. Nat Reviews Clin Oncol 17(7):395–417

    Article  Google Scholar 

  43. Yardım A, Kucukler S, Özdemir S, Çomaklı S, Caglayan C, Kandemir FM et al (2021) Silymarin alleviates docetaxel-induced central and peripheral neurotoxicity by reducing oxidative stress, inflammation and apoptosis in rats. Gene 769:145239

    Article  PubMed  Google Scholar 

  44. Demir Y, Özaslan MS, Duran HE, Küfrevioğlu Öİ, Beydemir Ş (2019) Inhibition effects of quinones on aldose reductase: Antidiabetic properties. Environ Toxicol Pharmacol 70:103195

    Article  CAS  PubMed  Google Scholar 

  45. Özbolat SN, Ayna A, Chrysin Suppresses (2021) HT-29 Cell Death Induced by Diclofenac through Apoptosis and Oxidative Damage. Nutr Cancer 73(8):1419–1428

    Article  PubMed  Google Scholar 

  46. Foufelle F, Fromenty B (2016) Role of endoplasmic reticulum stress in drug-induced toxicity. Pharmacol Res Perspect 4(1):e00211

    Article  PubMed  PubMed Central  Google Scholar 

  47. Yıldız MO, Çelik H, Caglayan C, Kandemir FM, Gür C, Bayav İ et al (2022) Neuromodulatory effects of hesperidin against sodium fluoride-induced neurotoxicity in rats: Involvement of neuroinflammation, endoplasmic reticulum stress, apoptosis and autophagy. Neurotoxicology 90:197–204

    Article  PubMed  Google Scholar 

  48. Adams CJ, Kopp MC, Larburu N, Nowak PR, Ali MMU (2019) Structure and Molecular Mechanism of ER Stress Signaling by the Unfolded Protein Response Signal Activator IRE1. ;6

  49. Lin JH, Walter P, Yen TSB (2008) Endoplasmic Reticulum Stress in Disease Pathogenesis. Annu Rev Pathol 3(1):399–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kopp MC, Larburu N, Durairaj V, Adams CJ, Ali MMU (2019) UPR proteins IRE1 and PERK switch BiP from chaperone to ER stress sensor. Nat Struct Mol Biol 26(11):1053–1062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Assoc. Prof. Ekrem Darendelioğlu and Assoc. Prof. Adnan Ayna for their valuable contributions to this study.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work.

Corresponding author

Correspondence to Cuneyt Caglayan.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Ethical approval

Experimental and animal-care protocols were approved by the Animal Experimentation Ethics Committee of Bingol University (Protocol No: 2022-E.53634).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varışlı, B., Caglayan, C., Kandemir, F.M. et al. The impact of Nrf2/HO-1, caspase-3/Bax/Bcl2 and ATF6/IRE1/PERK/GRP78 signaling pathways in the ameliorative effects of morin against methotrexate-induced testicular toxicity in rats. Mol Biol Rep 49, 9641–9649 (2022). https://doi.org/10.1007/s11033-022-07873-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07873-5

Keywords

Navigation