Skip to main content

Advertisement

Log in

Drug-herb combination therapy in cancer management

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Cancer is the second leading cause of fatality all over the world. Various unwanted side effects are being reported with the use of conventional chemotherapy. The plant derived bioactive compounds are the prominent alternative medicinal approach for reduction of chemotherapy associated side effects. The data is collected from Pubmed, Sci-hub, Google scholar, and Research gate were systematically searched up to year 2020. Several herbal drugs have been investigated and found with grateful anti-cancer potentials hence, it can be used in combination with chemotherapy for the depletion of associated side-effects. Herbal drugs and their extracts contain a mixture of active ingredients, which show interactions within themselves and along with chemotherapeutic agents to show either synergistic or antagonistic therapeutic effects. Therefore, it is necessary to develop alternative treatment to control chemotherapy associated side-effects. In this review, we discussed some of the significant chemical compounds, which could be efficient against cancer. This review focuses on the different herbal drugs that play an important role in the treatment of cancer and its associated side-effects. This study aimed to evaluate the efficacy of herbal treatment in combination with chemotherapy for cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and materials

Data has been collected from google scholar, pubmed, sci hub.

Code availability

NA.

Abbreviations

AA:

Arachidonic acid

CICI:

Chemotherapy-induced cognitive impairment, CIPN, Chemotherapy induced peripheral neuropathy

COX-2:

Cyclo-oxygenase-2

IFs:

Interferons

ILs:

Interleukins

iNOS:

Inducible nitric oxide synthase, LOX, liopxygenase

MCP-1:

Monocyte chemotactic protein-1

MIP-1α:

Monocyte inflammatory protein-1, PI3K, phosphoinositide 3-kinase

QoL:

Quality of life

WHO:

World Health Organization

CVS:

Cardiovascular system

GIT:

Gastrointestinal tract

5-FU:

5-Fluorouracil

NF-κB:

Nuclear factor-kappa B

MAPK:

Mitogen-activated protein kinase

EGF:

Epidermal growth factor

COX-2:

Cyclooxygenase-2

TNF-α:

Tumor necrosis factor-alpha

STAT3:

Signal transducer and activator of transcription 3

IL:

Interleukin

NO:

Nitric oxide

CML:

Chronic myeloid leukemia

PPD:

Protopanaxadiol

PPT:

Protopanaxatriol

HATs:

Histone acetyltransferases

HDAC:

Histone deacetylase

VEGF:

Vascular endothelial growth factor

MDR:

Multidrug resistance

MRPs:

Multidrug resistance-associated proteins

Pgp:

P-glycoprotein

CRF:

Cancer related fatigue

mTOR:

Mammalian target of rapamycin kinase

ERK:

Extracellular signal regulated kinase

MEK:

Mitogen activated protein kinase kinase

PKB:

Protein kinase B

ROS:

Reactive oxygen species

LPO:

Lipid peroxidation

AUC:

Area under the curve

CRC:

Colorectal cancer

IGFs:

Insulin like growth factor

PDGF:

Platelet derived growth factor

IGF-1:

Insulin like growth factor-1

IGFBPs:

IGF binding proteins

Cyt-c:

Cytochrome c

PLA2s:

Phospholipase A2

References

  1. Laskar YB, Lourembam RM and Mazumder PB (2020) Herbal Remedies for Breast Cancer Prevention and Treatment. Medicinal Plants-Use in Prevention and Treatment of Diseases, IntechOpen

  2. Kotb MG, Ibrahim RI, Said RMM, El Din MMW (2019) Chemotherapy-induced cognitive impairment in hematological malignancies. Egypt J Neurol Psychiat Neurosurg 55:1–8

    Article  Google Scholar 

  3. Seretny M, Currie GL, Sena ES, Ramnarine S, Grant R, MacLeod MR, Colvin LA, Fallon M (2014) Incidence, prevalence, and predictors of chemotherapy-induced peripheral neuropathy: a systematic review and meta-analysis. Pain® 155:2461–2470

    Article  Google Scholar 

  4. Lin SR, Chang CH, Hsu CF, Tsai MJ, Cheng H, Leong MK, Sung PJ, Chen JC, Weng CF (2020) Natural compounds as potential adjuvants to cancer therapy: Preclinical evidence. Br J Pharmacol 177:1409–1423

    Article  CAS  PubMed  Google Scholar 

  5. Cheng Y-Y, Hsieh C-H, Tsai T-H (2018) Concurrent administration of anticancer chemotherapy drug and herbal medicine on the perspective of pharmacokinetics. J Food Drug Anal 26:S88–S95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bonam SR, Wu YS, Tunki L, Chellian R, Halmuthur MSK, Muller S, Pandy V (2018) What has come out from phytomedicines and herbal edibles for the treatment of cancer? ChemMedChem 13:1854–1872

    Article  CAS  PubMed  Google Scholar 

  7. Mangla B, Kohli K (2018) Combination of natural agent with synthetic drug for the breast cancer therapy. Int J Drug Dev Res 10:22–26

    CAS  Google Scholar 

  8. Kahraman C, Arituluk ZC and Cankaya IIT (2020) The Clinical Importance of Herb-Drug Interactions and Toxicological Risks of Plants and Herbal Products. Med Toxicol 1–31.

  9. Fasinu PS, Rapp GK (2019) Herbal Interaction With Chemotherapeutic Drugs—A Focus on Clinically Significant Findings. Front Oncol 9:1356

    Article  PubMed  PubMed Central  Google Scholar 

  10. HemaIswarya S, Doble M (2006) Potential synergism of natural products in the treatment of cancer. Phytother Res 20:239–249

    Article  CAS  PubMed  Google Scholar 

  11. Devita VT Jr, Young RC, Canellos GP (1975) Combination versus single agent chemotherapy: a review of the basis for selection of drug treatment of cancer. Cancer 35:98–110

    Article  PubMed  Google Scholar 

  12. Roy M, Mukherjee S, Sarkar R, Biswas J (2011) Curcumin sensitizes chemotherapeutic drugs via modulation of PKC, telomerase, NF-κB and HDAC in breast cancer. Ther Deliv 2:1275–1293

    Article  CAS  Google Scholar 

  13. Zhan Y, Chen Y, Liu R, Zhang H, Zhang Y (2014) Potentiation of paclitaxel activity by curcumin in human breast cancer cell by modulating apoptosis and inhibiting EGFR signaling. Arch Pharmacal Res 37:1086–1095

    Article  CAS  Google Scholar 

  14. Yu Y, Zhou Q, Hang Y, Bu X, Jia W (2007) Antiestrogenic effect of 20S-protopanaxadiol and its synergy with tamoxifen on breast cancer cells. Cancer 109:2374–2382

    Article  CAS  PubMed  Google Scholar 

  15. Yang LQ, Wang B, Gan H, Fu ST, Zhu XX, Wu ZN, Zhan DW, Gu RL, Dou GF, Meng ZY (2012) Enhanced oral bioavailability and anti-tumour effect of paclitaxel by 20 (s)-ginsenoside Rg3 in vivo. Biopharm Drug Dispos 33:425–436

    Article  CAS  PubMed  Google Scholar 

  16. Vinod B, Antony J, Nair H, Puliyappadamba V, Saikia M, Shyam Narayanan S, Bevin A, John Anto R (2013) Mechanistic evaluation of the signaling events regulating curcumin-mediated chemosensitization of breast cancer cells to 5-fluorouracil. Cell Death Dis 4:e505–e505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schröder L, Marahrens P, Koch JG, Heidegger H, Vilsmeier T, Phan-Brehm T, Hofmann S, Mahner S, Jeschke U, Richter DU (2019) Effects of green tea, matcha tea and their components epigallocatechin gallate and quercetin on MCF-7 and MDA-MB-231 breast carcinoma cells Corrigendum in/10.3892/or. 2019.7430. Oncol Rep 41:387–396

    PubMed  Google Scholar 

  18. Goey AK, Meijerman I, Rosing H, Burgers JA, Mergui-Roelvink M, Keessen M, Marchetti S, Beijnen JH, Schellens JH (2013) The effect of E chinacea purpurea on the pharmacokinetics of docetaxel. Br J Clin Pharmacol 76:467–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ghafari F, Rajabi MR, Mazoochi T, Taghizadeh M, Nikzad H, Atlasi MA, Taherian A (2017) Comparing apoptosis and necrosis effects of Arctium lappa root extract and doxorubicin on MCF7 and MDA-MB-231 cell lines. Asian Pacific J Cancer Prev 18:795

    Google Scholar 

  20. Ganji-Harsini S, Khazaei M, Rashidi Z, Ghanbari A (2016) Thymoquinone could increase the efficacy of tamoxifen induced apoptosis in human breast cancer cells: An in vitro study. Cell Journal (Yakhteh) 18:245

    Google Scholar 

  21. Khan A, Aldebasi YH, Alsuhaibani SA, Khan MA (2019) Thymoquinone augments cyclophosphamide-mediated inhibition of cell proliferation in breast cancer cells. Asian Pacific J Cancer Prev 20:1153

    Article  CAS  Google Scholar 

  22. Mason JK, Fu M, Chen J, Thompson LU (2015) Flaxseed oil enhances the effectiveness of trastuzumab in reducing the growth of HER2-overexpressing human breast tumors (BT-474). J Nutr Biochem 26:16–23

    Article  CAS  PubMed  Google Scholar 

  23. Wong AS, Che C-M, Leung K-W (2015) Recent advances in ginseng as cancer therapeutics: a functional and mechanistic overview. Nat Prod Rep 32:256–272

    Article  CAS  PubMed  Google Scholar 

  24. Ben-Shabat S, Yarmolinsky L, Porat D, Dahan A (2020) Antiviral effect of phytochemicals from medicinal plants: Applications and drug delivery strategies. Drug Deliv Transl Res 10:354–367

    Article  CAS  PubMed  Google Scholar 

  25. Zhang H-l, Gan X-q, Fan Q-f, Yang J-j, Zhang P, H-b Hu, Song Q-s (2017) Chemical constituents and anti-inflammatory activities of Maqian (Zanthoxylum myriacanthum var. pubescens) bark extracts. Sci Rep 7:1–13

    Google Scholar 

  26. Jeong JS, Piao Y, Kang S, Son M, Kang YC, Du XF, Ryu J, Cho YW, Jiang H-H, Oh MS (2018) Triple herbal extract DA-9805 exerts a neuroprotective effect via amelioration of mitochondrial damage in experimental models of Parkinson’s disease. Sci Rep 8:1–13

    Article  Google Scholar 

  27. Mansouri K, Rasoulpoor S, Daneshkhah A, Abolfathi S, Salari N, Mohammadi M, Rasoulpoor S, Shabani S (2020) Clinical effects of curcumin in enhancing cancer therapy: a systematic review. BMC Cancer 20:1–11

    Article  Google Scholar 

  28. Ireson C, Orr S, Jones DJ, Verschoyle R, Lim C-K, Luo J-L, Howells L, Plummer S, Jukes R, Williams M (2001) Characterization of metabolites of the chemopreventive agent curcumin in human and rat hepatocytes and in the rat in vivo, and evaluation of their ability to inhibit phorbol ester-induced prostaglandin E2 production. Can Res 61:1058–1064

    CAS  Google Scholar 

  29. Nelson KM, Dahlin JL, Bisson J, Graham J, Pauli GF, Walters MA (2017) The essential medicinal chemistry of curcumin: miniperspective. J Med Chem 60:1620–1637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ali BH, Marrif H, Noureldayem SA, Bakheit AO, Blunden G (2006) Some biological properties of curcumin: a review. Nat Product Commun 1:1934578X0600100613

    Google Scholar 

  31. Wilken R, Veena MS, Wang MB, Srivatsan ES (2011) Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol Cancer 10:1–19

    Article  Google Scholar 

  32. Liu D, Chen Z (2013) The effect of curcumin on breast cancer cells. J Breast Cancer 16:133–137

    Article  PubMed  PubMed Central  Google Scholar 

  33. Koohpar ZK, Entezari M, Movafagh A and Hashemi M (2015) Anticancer activity of curcumin on human breast adenocarcinoma: role of Mcl-1 gene. Iranian J Cancer Prev 8

  34. Piantino CB, Salvadori FA, Ayres PP, Kato RB, Srougi V, Leite KR, Srougi M (2009) An evaluation of the anti-neoplastic activity of curcumin in prostate cancer cell lines. Int Braz J Urol 35:354–361

    Article  PubMed  Google Scholar 

  35. Bimonte S, Barbieri A, Leongito M, Piccirillo M, Giudice A, Pivonello C, De Angelis C, Granata V, Palaia R, Izzo F (2016) Curcumin anticancer studies in pancreatic cancer. Nutrients 8:433

    Article  PubMed Central  Google Scholar 

  36. Tan BL, Norhaizan ME (2019) Curcumin combination chemotherapy: The implication and efficacy in cancer. Molecules 24:2527

    Article  CAS  PubMed Central  Google Scholar 

  37. Chiu T-L, Su C-C (2009) Curcumin inhibits proliferation and migration by increasing the Bax to Bcl-2 ratio and decreasing NF-κBp65 expression in breast cancer MDA-MB-231 cells. Int J Mol Med 23:469–475

    CAS  PubMed  Google Scholar 

  38. Hassan B (2020) Medicinal Plants: Use in Prevention and Treatment of Diseases. BoD–Books on Demand.

  39. Aggarwal BB, Shishodia S, Takada Y, Banerjee S, Newman RA, Bueso-Ramos CE, Price JE (2005) Curcumin suppresses the paclitaxel-induced nuclear factor-κB pathway in breast cancer cells and inhibits lung metastasis of human breast cancer in nude mice. Clin Cancer Res 11:7490–7498

    Article  CAS  PubMed  Google Scholar 

  40. Ghalaut VS, Sangwan L, Dahiya K, Ghalaut P, Dhankhar R, Saharan R (2012) Effect of imatinib therapy with and without turmeric powder on nitric oxide levels in chronic myeloid leukemia. J Oncol Pharm Pract 18:186–190

    Article  CAS  PubMed  Google Scholar 

  41. Lu J-M, Yao Q, Chen C (2009) Ginseng compounds: an update on their molecular mechanisms and medical applications. Curr Vasc Pharmacol 7:293–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Peng D, Wang H, Qu C, Xie L, Wicks SM, Xie J (2012) Ginsenoside Re: its chemistry, metabolism and pharmacokinetics. Chinese Med 7:1–6

    Article  Google Scholar 

  43. Christensen LP (2008) Ginsenosides: chemistry, biosynthesis, analysis, and potential health effects. Adv Food Nutr Res 55:1–99

    Article  Google Scholar 

  44. Lu P, Su W, Miao Z-h, Niu H-r, Liu J, Hua Q-l (2008) Effect and mechanism of ginsenoside Rg3 on postoperative life span of patients with non-small cell lung cancer. Chin J Integr Med 14:33–36

    Article  CAS  PubMed  Google Scholar 

  45. Wang L, Li X, Song YM, Wang B, Zhang FR, Yang R, Wang HQ, Zhang GJ (2015) Ginsenoside Rg3 sensitizes human non-small cell lung cancer cells to γ-radiation by targeting the nuclear factor-κB pathway. Mol Med Rep 12:609–614

    Article  CAS  PubMed  Google Scholar 

  46. Shan X, Fu Y-S, Aziz F, Wang X-Q, Yan Q, Liu J-W (2014) Ginsenoside Rg3 inhibits melanoma cell proliferation through down-regulation of histone deacetylase 3 (HDAC3) and increase of p53 acetylation. PLoS ONE 9:e115401

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kim SM, Lee SY, Cho JS, Son SM, Choi SS, Yun YP, Yoo HS, Oh K-W, Han SB, Hong JT (2010) Combination of ginsenoside Rg3 with docetaxel enhances the susceptibility of prostate cancer cells via inhibition of NF-κB. Eur J Pharmacol 631:1–9

    Article  CAS  PubMed  Google Scholar 

  48. Kim SM, Lee SY, Yuk DY, Moon DC, Choi SS, Kim Y, Han SB, Oh K-W, Hong JT (2009) Inhibition of NF-κB by ginsenoside Rg3 enhances the susceptibility of colon cancer cells to docetaxel. Arch Pharmacal Res 32:755–765

    Article  CAS  Google Scholar 

  49. Nishida N, Yano H, Nishida T, Kamura T, Kojiro M (2006) Angiogenesis in cancer. Vascular health Risk manag 2:213

    Article  CAS  Google Scholar 

  50. Chen S, Wang Z, Huang Y, O’Barr SA, Wong RA, Yeung S, Chow MSS (2014) Ginseng and anticancer drug combination to improve cancer chemotherapy: a critical review. Evid Based Complement Alternat Med 2014:168940

    PubMed  PubMed Central  Google Scholar 

  51. Hamed AR, Abdel-Azim NS, Shams KA, Hammouda FM (2019) Targeting multidrug resistance in cancer by natural chemosensitizers. Bullet Nat Res Centre 43:1–14

    Google Scholar 

  52. Choi C-H, Kang G, Min Y-D (2003) Reversal of P-glycoprotein-mediated multidrug resistance by protopanaxatriol ginsenosides from Korean red ginseng. Planta Med 69:235–240

    Article  CAS  PubMed  Google Scholar 

  53. Pourmohamadi K, Ahmadzadeh A, Latifi M (2018) Investigating the effects of oral ginseng on the cancer-related fatigue and quality of life in patients with non-metastatic cancer. Int J Hematol-Oncol Stem Cell Res 12:313

    PubMed  PubMed Central  Google Scholar 

  54. Barton DL, Soori GS, Bauer BA, Sloan JA, Johnson PA, Figueras C, Duane S, Mattar B, Liu H, Atherton PJ (2010) Pilot study of Panax quinquefolius (American ginseng) to improve cancer-related fatigue: a randomized, double-blind, dose-finding evaluation: NCCTG trial N03CA. Support Care Cancer 18:179–187

    Article  PubMed  Google Scholar 

  55. Panche A, Diwan A, Chandra S (2016) Flavonoids: an overview. J Nut Sci 5:e47

    Article  CAS  Google Scholar 

  56. Abotaleb M, Samuel SM, Varghese E, Varghese S, Kubatka P, Liskova A, Büsselberg D (2019) Flavonoids in cancer and apoptosis. Cancers 11:28

    Article  CAS  Google Scholar 

  57. Heim KE, Tagliaferro AR, Bobilya DJ (2002) Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J Nutr Biochem 13:572–584

    Article  CAS  PubMed  Google Scholar 

  58. Kumar S, Pandey AK (2013) Chemistry and biological activities of flavonoids: an overview. Sci World J 2013:162750

    Article  Google Scholar 

  59. Brusselmans K, Vrolix R, Verhoeven G, Swinnen JV (2005) Induction of cancer cell apoptosis by flavonoids is associated with their ability to inhibit fatty acid synthase activity. J Biol Chem 280:5636–5645

    Article  CAS  PubMed  Google Scholar 

  60. Kale A, Gawande S, Kotwal S (2008) Cancer phytotherapeutics: role for flavonoids at the cellular level. Phytother Res 22:567–577

    Article  CAS  PubMed  Google Scholar 

  61. George VC, Dellaire G, Rupasinghe HV (2017) Plant flavonoids in cancer chemoprevention: role in genome stability. J Nutr Biochem 45:1–14

    Article  CAS  PubMed  Google Scholar 

  62. Muldoon LL, Soussain C, Jahnke K, Johanson C, Siegal T, Smith QR, Hall WA, Hynynen K, Senter PD, Peereboom DM (2007) Chemotherapy delivery issues in central nervous system malignancy: a reality check. J Clin Oncol 25:2295–2305

    Article  CAS  PubMed  Google Scholar 

  63. Batra P, Sharma AK (2013) Anti-cancer potential of flavonoids: recent trends and future perspectives. Biotech 3:439–459

    Google Scholar 

  64. Jakubowicz-Gil J, Langner E, Bądziul D, Wertel I, Rzeski W (2013) Apoptosis induction in human glioblastoma multiforme T98G cells upon temozolomide and quercetin treatment. Tumor Biology 34:2367–2378

    Article  CAS  PubMed  Google Scholar 

  65. Li S-z, Li K, J-h Z, Dong Z (2013) The effect of quercetin on doxorubicin cytotoxicity in human breast cancer cells. Anticancer Agents Med Chem 13:352–355

    Article  CAS  PubMed  Google Scholar 

  66. Santandreu FM, Valle A, Oliver J, Roca P (2011) Resveratrol potentiates the cytotoxic oxidative stress induced by chemotherapy in human colon cancer cells. Cell Physiol Biochem 28:219–228

    Article  CAS  PubMed  Google Scholar 

  67. Chan JY, Phoo MS, Clement M-V, Pervaiz S, Lee SC (2008) Resveratrol displays converse dose-related effects on 5-fluorouracil-evoked colon cancer cell apoptosis: the roles of caspase-6 and p53. Cancer Biol Ther 7:1305–1312

    Article  CAS  PubMed  Google Scholar 

  68. Markman M, Mekhail TM (2002) Paclitaxel in cancer therapy. Expert Opin Pharmacother 3:755–766

    Article  PubMed  Google Scholar 

  69. Sparreboom A, Van Asperen J, Mayer U, Schinkel AH, Smit JW, Meijer DK, Borst P, Nooijen WJ, Beijnen JH, Van Tellingen O (1997) Limited oral bioavailability and active epithelial excretion of paclitaxel (Taxol) caused by P-glycoprotein in the intestine. Proc Natl Acad Sci 94:2031–2035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lee C-K, Choi J-S (2010) Effects of silibinin, inhibitor of CYP3A4 and P-glycoprotein in vitro, on the pharmacokinetics of paclitaxel after oral and intravenous administration in rats. Pharmacology 85:350–356

    Article  CAS  PubMed  Google Scholar 

  71. Delmas D, Xiao J, Vejux A, Aires V (2020) Silymarin and cancer: a dual strategy in both in chemoprevention and chemosensitivity. Molecules 25:2009

    Article  CAS  PubMed Central  Google Scholar 

  72. Ivernizzi R, Bernuzzi S, Ciani D, Ascari E (1993) Silymarine during maintenance therapy of acute promyelocytic leukemia. Haematologica 78:340–341

    Google Scholar 

  73. Hoensch H, Groh B, Edler L, Kirch W (2008) Prospective cohort comparison of flavonoid treatment in patients with resected colorectal cancer to prevent recurrence. World J Gastroenterol: WJG 14:2187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Farsad-Naeimi A, Alizadeh M, Esfahani A, Aminabad ED (2018) Effect of fisetin supplementation on inflammatory factors and matrix metalloproteinase enzymes in colorectal cancer patients. Food Funct 9:2025–2031

    Article  CAS  PubMed  Google Scholar 

  75. Kim MJ, Kim H (2015) Anticancer effect of lycopene in gastric carcinogenesis. J Cancer Prev 20:92

    Article  PubMed  PubMed Central  Google Scholar 

  76. Srivastava S, Srivastava AK (2015) Lycopene; chemistry, biosynthesis, metabolism and degradation under various abiotic parameters. J Food Sci Technol 52:41–53

    Article  CAS  Google Scholar 

  77. Shi J, Maguer ML (2000) Lycopene in tomatoes: chemical and physical properties affected by food processing. Crit Rev Food Sci Nutr 40:1–42

    Article  CAS  PubMed  Google Scholar 

  78. Bae JW, Bae J-S (2011) Barrier protective effects of lycopene in human endothelial cells. Inflamm Res 60:751–758

    Article  CAS  PubMed  Google Scholar 

  79. Huang C-S, Fan Y-E, Lin C-Y, Hu M-L (2007) Lycopene inhibits matrix metalloproteinase-9 expression and down-regulates the binding activity of nuclear factor-kappa B and stimulatory protein-1. J Nutr Biochem 18:449–456

    Article  CAS  PubMed  Google Scholar 

  80. Ono M, Takeshima M, Nakano S (2015) Mechanism of the anticancer effect of lycopene (tetraterpenoids). The Enzymes 37:139–166

    Article  CAS  PubMed  Google Scholar 

  81. Giovannucci E (1999) Insulin-like growth factor-I and binding protein-3 and risk of cancer. Hormone Res Paediatr 51:34–41

    Article  CAS  Google Scholar 

  82. Mahmoodnia L, Mohammadi K, Masumi R (2017) Ameliorative effect of lycopene effect on cisplatin-induced nephropathy in patient. J Nephropathol 6:144

    Article  PubMed  PubMed Central  Google Scholar 

  83. Liu C, Ho PC-L, Wong FC, Sethi G, Wang LZ, Goh BC (2015) Garcinol: Current status of its anti-oxidative, anti-inflammatory and anti-cancer effects. Cancer Lett 362:8–14

    Article  CAS  PubMed  Google Scholar 

  84. Padhye S, Ahmad A, Oswal N, Sarkar FH (2009) Emerging role of Garcinol, the antioxidant chalcone from Garcinia indica Choisy and its synthetic analogs. J Hematol Oncol 2:1–13

    Article  Google Scholar 

  85. Tang W, Pan M-H, Sang S, Li S, Ho C-T (2013) Garcinol from Garcinia indica: chemistry and health beneficial effects. Tropical and Subtropical Fruits: Flavors, Color, and Health Benefits 133–145.

  86. Saadat N, Gupta SV (2012) Potential role of garcinol as an anticancer agent. J Oncol 2012:647206

    Article  PubMed  PubMed Central  Google Scholar 

  87. Balasubramanyam K, Altaf M, Varier RA, Swaminathan V, Ravindran A, Sadhale PP, Kundu TK (2004) Polyisoprenylated benzophenone, garcinol, a natural histone acetyltransferase inhibitor, represses chromatin transcription and alters global gene expression. J Biol Chem 279:33716–33726

    Article  CAS  PubMed  Google Scholar 

  88. Abu Samaan TM, Samec M, Liskova A, Kubatka P, Büsselberg D (2019) Paclitaxel’s mechanistic and clinical effects on breast cancer. Biomolecules 9:789

    Article  CAS  PubMed Central  Google Scholar 

  89. Tu S-H, Chiou Y-S, Kalyanam N, Ho C-T, Chen L-C, Pan M-H (2017) Garcinol sensitizes breast cancer cells to Taxol through the suppression of caspase-3/iPLA 2 and NF-κB/Twist1 signaling pathways in a mouse 4T1 breast tumor model. Food Funct 8:1067–1079

    Article  CAS  PubMed  Google Scholar 

  90. Zhang J, Fang H, Zhang J, Guan W, Xu G (2020) Garcinol alone and in combination with cisplatin affect cellular behavior and PI3K/AKT protein phosphorylation in human ovarian cancer cells. Dose-Response 18:1559325820926732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Allemani C, Coleman MP (2017) Public health surveillance of cancer survival in the United States and worldwide: The contribution of the CONCORD programme. Cancer 123:4977–4981

    Article  PubMed  Google Scholar 

  92. Fu B, Wang N, Tan H-Y, Li S, Cheung F, Feng Y (2018) Multi-component herbal products in the prevention and treatment of chemotherapy-associated toxicity and side effects: a review on experimental and clinical evidences. Front Pharmacol 9:1394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wang Z, Xie C, Huang Y, Lam CWK, Chow MS (2014) Overcoming chemotherapy resistance with herbal medicines: past, present and future perspectives. Phytochem Rev 13:323–337

    Article  CAS  Google Scholar 

  94. Desai AG, Qazi GN, Ganju RK, El-Tamer M, Singh J, Saxena AK, Bedi YS, Taneja SC, Bhat HK (2008) Medicinal plants and cancer chemoprevention. Curr Drug Metab 9:581–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Shahid U (2013) Herbal treatment strategies for breast cancer. OMICS group of ebooks.

  96. Thakur VS, Deb G, Babcook MA, Gupta S (2014) Plant phytochemicals as epigenetic modulators: role in cancer chemoprevention. AAPS J 16:151–163

    Article  CAS  PubMed  Google Scholar 

  97. Lephart ED (2015) Modulation of aromatase by phytoestrogens. Enzyme Res 2015:1–11

    Article  Google Scholar 

  98. Sun S-Y, Hail N Jr, Lotan R (2004) Apoptosis as a novel target for cancer chemoprevention. J Natl Cancer Inst 96:662–672

    Article  CAS  PubMed  Google Scholar 

  99. Liu J-j, Lin M, Yu J-y, Liu B, Bao J-k (2011) Targeting apoptotic and autophagic pathways for cancer therapeutics. Cancer Lett 300:105–114

    Article  CAS  PubMed  Google Scholar 

  100. Chatfield K, Salehi B, Sharifi-Rad J, Afshar L (2018) Applying an ethical framework to herbal medicine. Evid Based Complement Alternat Med 2018:1–7

    Article  Google Scholar 

Download references

Funding

This work was supported by DST SERB under EEQ grant with File No. EEQ/2019/000690.

Author information

Authors and Affiliations

Authors

Contributions

UL wrote the manuscript VK revised the manuscript and CS critically revised the manuscript, and AS verified the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Arti Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 565 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Langeh, U., Kumar, V., Singh, C. et al. Drug-herb combination therapy in cancer management. Mol Biol Rep 49, 11009–11024 (2022). https://doi.org/10.1007/s11033-022-07861-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07861-9

Keywords

Navigation