Skip to main content
Log in

The anti-inflamatory effect of Andira anthelmia lectin in rats involves inhibition of the prostanoid pathway, TNF-α and lectin domain

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Objective

To investigate the effect and mechanisms of Andira anthelmia lectin in rat models of acute inflammation.

Material

AAL anti-inflammatory activity was evaluated in Wistar rat models of paw edema and peritonitis.

Methods

AAL (0.01–1 mg/kg i.v.) was injected 30 min before stimulation with carrageenan and with initial and late phase inflammatory mediators into the animals paw or peritoneum for evaluation of cell migration (optical and intravital microscopy), paw edema (plethysmometry and histopathology); hyperalgesia (analgesimetry).

Results

AAL inhibited leukocyte migration induced by carrageenan, mainly neutrophils to the peritoneal fluid, decreasing leukocyte adhesion. In the peritoneal fluid, AAL reduced the gene expression of TNF-α and cyclooxygenase, as well the levels of PGE2. AAL inhibited the paw edema induced by carrageenan, serotonin, histamine, TNF-α, PLA2 and PGE2, but not by L-arginine. In this model, AAL also inhibited mechanical hypernociception induced by TNF-α, PGE2, db-cAMP and capsaicin, and the activity of myeloperoxidase in the paw tissues.

Conclusion

AAL presents anti-inflammatory effect in acute models of rat inflammation involving the participation of prostaglandins, TNF-α and lectin domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kameritsch P, Renkawitz J (2020) Principles of leukocyte migration strategies. Trends Cell Biol 10:818–832. https://doi.org/10.1016/j.tcb.2020.06.007

    Article  CAS  Google Scholar 

  2. Nourshargh S, Alon R (2014) Leukocyte migration into inflamed tissues. Immunity 41(5):694–707. https://doi.org/10.1016/j.immuni.2014.10.008

    Article  CAS  PubMed  Google Scholar 

  3. Kalinski P (2012) Regulation of immune responses by prostaglandin E2. J Immunol 188(1):21–28. https://doi.org/10.4049/jimmunol.1101029

    Article  CAS  PubMed  Google Scholar 

  4. Sharon N, Lis H (2004) History of lectins: from hemagglutinins to biological recognition molecules. Glycobiology 14(11):53–62. https://doi.org/10.1093/glycob/cwh122

    Article  CAS  Google Scholar 

  5. Wiederschain GT (2013) Glycobiology: progress, problems, and perspectives. Biochemistry (Mosc) 78(7):679–696. https://doi.org/10.1134/S0006297913070018

    Article  CAS  Google Scholar 

  6. Nascimento KS, Silva MTL, Oliveira MV, Lossio CF, Pinto-Junior VR, Osterne VJS, Cavada BS (2020) Dalbergieae lectins: a review of lectins from species of a primitive Papilionoideae (leguminous) tribe. Int J Biol Macromol 144:509–526. https://doi.org/10.1016/j.ijbiomac.2019.12.117

    Article  CAS  PubMed  Google Scholar 

  7. Rüdiger H, Gabius HJ (2001) Plant lectins: occurrence, biochemistry, functions and applications. Glycoconj J 18(8):589–613. https://doi.org/10.1023/a:1020687518999

    Article  PubMed  Google Scholar 

  8. Nascimento KS, Nascimento FLF, Silva MTL, Nobre CB, Moreira CG, Brizeno LAC, da Ponte EL, Assreuy AMS, Cavada BS (2015) Purification of a thermostable antinociceptive lectin isolated from Andira anthelmia. J Mol Recognit 29(6):248–252. https://doi.org/10.1002/jmr.2523

    Article  CAS  PubMed  Google Scholar 

  9. Souza GE, Ferreira SH (1985) Blockade by antimacrophage serum of the migration of PMN neutrophils into the inflamed peritoneal cavity. Agents Actions 17(1):97–103. https://doi.org/10.1007/BF01966691

    Article  PubMed  Google Scholar 

  10. Fortes ZB, Farsky SP, Oliveira MA, Garcia-Leme J (1991) Direct vital microscopic study of defective leukocyte–endothelial interaction in diabetes mellitus. Diabetes 40(10):1267–1273. https://doi.org/10.2337/diab.40.10.1267

    Article  CAS  PubMed  Google Scholar 

  11. Landucci EC, Antunes E, Donato JL, Faro R, Hyslop S, Marangoni S, Oliveira B, Cirino G, de Nucci G (1995) Inhibition of carrageenin-induced rat paw oedema by crotapotin, a polypeptide complexed with phospholipase A2. Br J Pharmacol 114(3):578–583. https://doi.org/10.1111/j.1476-5381.1995.tb17178.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bradley PP, Christensen RD, Rothstein G (1982) Cellular and extracellular myeloperoxidase in pyogenic inflammation. Blood 60(3):618–622

    Article  CAS  Google Scholar 

  13. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 7(72):248–254. https://doi.org/10.1006/abio.1976.9999

    Article  Google Scholar 

  14. Teixeira CS, Assreuy AMS, Osterne VJS, Amorim RMF, Brizeno LAC, Debray H, Nagano CS, Delatorre P, Sampaio AH, Rocha BAM, Cavada BS (2014) Mannose-specific legume lectin from the seeds of Dolichos lablab (FRIL) stimulates inflammatory and hypernociceptive processes in mice. Process Biochem 49(3):529–534. https://doi.org/10.1016/j.procbio.2013.12.020

    Article  CAS  Google Scholar 

  15. Vivancos GG, Verri WA Jr, Cunha TM, Schivo IRS, Parada CA, Cunha FQ, Ferreira SH (2004) An electronic pressure-meter nociception paw test for rats. Braz J Med Biol Res 37(3):391–399. https://doi.org/10.1590/s0100-879x2004000300017

    Article  CAS  PubMed  Google Scholar 

  16. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  17. Souza GE, Cunha FQ, Mello R, Ferreira SH (1988) Neutrophil migration induced by inflammatory stimuli is reduced by macrophage depletion. Agents Actions 24(3–4):377–380. https://doi.org/10.1007/BF02028296

    Article  CAS  PubMed  Google Scholar 

  18. Alencar NMN, Cavalcante CF, Vasconcelos MP, Leite KB, Aragão KS, Assreuy AMS, Nogueira NAP, Cavada BS, Vale MR (2005) Anti-inflammatory and antimicrobial effect of lectin from Lonchocarpus sericeus seeds in an experimental rat model of infectious peritonitis. J Pharm Pharmacol 57(7):919–922. https://doi.org/10.1211/0022357056352

    Article  CAS  PubMed  Google Scholar 

  19. Napimoga MH, Cavada BS, Alencar NMN, Mota ML, Bittencourt FS, Alves-Filho JC, Grespan R, Gonçalves RB, Clemente-Napimoga JT, de Freitas A, Parada CA, Ferreira SH, Cunha FQ (2007) Lonchocarpus sericeus lectin decreases leukocyte migration and mechanical hypernociception by inhibiting cytokine and chemokines production. Int Immunopharmacol 7(6):824–835. https://doi.org/10.1016/j.intimp.2007.02.001

    Article  CAS  PubMed  Google Scholar 

  20. Pires AF, Marques GF, Alencar N, Martins MG, Silva MTD, Nascimento KS, Cavada BS, Assreuy A, Maria S (2019) Inhibitory effect of Lonchocarpus araripensis lectin in rat acute models of inflammation. An Acad Bras Cienc. https://doi.org/10.1590/0001-3765201920180991

    Article  PubMed  Google Scholar 

  21. van der Veen BS, de Winther MP, Heeringa P (2009) Myeloperoxidase: molecular mechanisms of action and their relevance to human health and disease. Antioxid Redox Signal 11(11):2899–2937. https://doi.org/10.1089/ars.2009.2538

    Article  CAS  PubMed  Google Scholar 

  22. Assreuy AM, Shibuya MD, Martins GJ, De Souza ML, Cavada BS, Moreira RA, Oliveira JT, Ribeiro RA, Flores CA (1997) Anti-inflammatory effect of glucose-mannose binding lectins isolated from Brazilian beans. Mediators Inflamm 6(3):201–210. https://doi.org/10.1080/09629359791695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Assreuy AM, Martins GJ, Moreira ME, Brito GA, Cavada BS, Ribeiro RA, Flores CA (1999) Prevention of cyclophosphamide-induced hemorrhagic cystitis by glucose-mannose binding plant lectins. J Urol 161(6):1988–1993

    Article  CAS  Google Scholar 

  24. Assreuy AM, Fontenele SR, Pires AF, Fernandes DC, Rodrigues NV, Bezerra EH, Moura TR, do Nascimento KS, Cavada BS (2009) Vasodilator effects of Diocleinae lectins from the Canavalia genus. Naunyn-Schmiedeberg’s Arch Pharmacol 380(6):509–521. https://doi.org/10.1007/s00210-009-0465-1

    Article  CAS  Google Scholar 

  25. Rocha BA, Delatorre P, Oliveira TM, Benevides RG, Pires AF, Sousa AA, Assreuy AM, Debray H, Azevedo WFJR, Sampaio AH, Cavada BS (2011) Structural basis for both pro- and anti-inflammatory response induced by mannose-specific legume lectin from Cymbosema roseum. Biochimie 93(5):806–816. https://doi.org/10.1016/j.biochi.2011.01.006

    Article  CAS  PubMed  Google Scholar 

  26. Di Rosa M, Giroud JP, Willoughby DA (1971) Studies on the mediators of the acute inflammatory response induced in rats in different sites by carrageenan and turpentine. J Pathol 104(1):15–29. https://doi.org/10.1002/path.1711040103

    Article  PubMed  Google Scholar 

  27. Ferreira SH, Moncada S, Parsons M, Vane JR (1974) Proceedings: the concomitant release of bradykinin and prostaglandin in the inflammatory response to carrageenin. Br J Pharmacol 52(1):108–109

    Google Scholar 

  28. Boughton-Smith NK, Deakin AM, Follenfant RL, Whittle BJ, Garland LG (1993) Role of oxygen radicals and arachidonic acid metabolites in the reverse passive Arthus reaction and carrageenin paw oedema in the rat. Br J Pharmacol 110(2):896–902. https://doi.org/10.1111/j.1476-5381.1993.tb13897.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Di Rosa M, Sorrentino L (1968) The mechanism of the inflammatory effect of carrageenin. Eur J Pharmacol 4(3):340–342. https://doi.org/10.1016/0014-2999(68)90103-9

    Article  PubMed  Google Scholar 

  30. Pinto NV, Cavada BS, Brito LF, Pereira RI, da Silva MT, Castro RR, de Freitas PA, Assreuy AM (2013) Effects of Canavalia lectins on acute inflammation in sensitized and non-sensitized rats. Inflammation 36(3):713–722. https://doi.org/10.1007/s10753-013-9596-0

    Article  CAS  PubMed  Google Scholar 

  31. Pires AF, Rodrigues NV, Soares PMG, Ribeiro RDA, Aragao KS, Marinho MM, da Silva MT, Cavada BS, Assreuy AMS (2016) A novel N-acetyl-glucosamine lectin of Lonchocarpus araripensis attenuates acute cellular inflammation in mice. Inflamm Res 65(1):43–52. https://doi.org/10.1007/s00011-015-0889-7

    Article  CAS  PubMed  Google Scholar 

  32. Vinegar R, Schreiber W, Hugo R (1969) Biphasic development of carrageenin edema in rats. J Pharmacol Exp Ther 166(1):96–103

    CAS  PubMed  Google Scholar 

  33. Sachs D, Villarreal CF, Cunha FQ, Parada CA, Ferreira SH (2009) The role of PKA and PKCepsilon pathways in prostaglandin E2-mediated hypernociception. Br J Pharmacol 156(5):826–834. https://doi.org/10.1111/j.1476-5381.2008.00093.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mizumura K, Minagawa M, Tsujii Y, Kumazawa T (1993) Prostaglandin E2-induced sensitization of the heat response of canine visceral polymodal receptors in vitro. Neurosci Lett 161(1):117–119. https://doi.org/10.1016/0304-3940(93)90154-d

    Article  CAS  PubMed  Google Scholar 

  35. Moriyama T, Higashi T, Togashi K, Iida T, Segi E, Sugimoto Y, Tominaga T, Narumiya S, Tominaga S (2005) Sensitization of TRPV1 by EP1 and IP reveals peripheral nociceptive mechanism of prostaglandins. Mol Pain 1:13. https://doi.org/10.1186/1744-8069-1-3

    Article  CAS  Google Scholar 

  36. Cunha FQ, Poole S, Lorenzett BB, Ferreira SH (1992) The pivotal role of tumour necrosis factor alpha in the development of inflammatory hyperalgesia. Br J Pharmacol 107(3):660–664. https://doi.org/10.1111/j.1476-5381.1992.tb14503.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ferreira SH, Nakamura M (1979) I—Prostaglandin hyperalgesia, a cAMP/Ca2+ dependent process. Prostaglandins 18(2):179–190. https://doi.org/10.1016/0090-6980(79)90103-5

    Article  CAS  PubMed  Google Scholar 

  38. Cunha FQ, Teixeira MM, Ferreira SH (1999) Pharmacological modulation of secondary mediator systems–cyclic AMP and cyclic GMP–on inflammatory hyperalgesia. Br J Pharmacol 127(3):671–678. https://doi.org/10.1038/sj.bjp.0702601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kassuya CAL, Ferreira J, Claudino RF, Calixto JB (2007) Intraplantar PGE2 causes nociceptive behaviour and mechanical allodynia: the role of prostanoid E receptors and protein kinases. Br J Pharmacol 150(6):727–737. https://doi.org/10.1038/sj.bjp.0707149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kawabata A (2011) Prostaglandin E2 and pain–an update. Biol Pharm Bull 34(8):1170–1173. https://doi.org/10.1248/bpb.34.1170

    Article  CAS  PubMed  Google Scholar 

  41. Zhang X, Wu J, Fang L, Willis WD (2003) The effects of protein phosphatase inhibitors on nociceptive behavioral responses of rats following intradermal injection of capsaicin. Pain 106(3):443–451. https://doi.org/10.1016/j.pain.2003.09.002

    Article  CAS  PubMed  Google Scholar 

  42. Sawynok J, Reid A, Meisner J (2006) Pain behaviors produced by capsaicin: influence of inflammatory mediators and nerve injury. J Pain 7(2):134–141. https://doi.org/10.1016/j.jpain.2005.09.013

    Article  CAS  PubMed  Google Scholar 

  43. Assreuy AMS, Amorim RMF, Martins SL, Martins MGQ, Cajazeiras JB, da Silva MTL, Pires AF, Nascimento KS, Cavada BS, Mota MRL (2020) Antinociceptive effect of Lonchocarpus araripensis lectin: activation of L-arginine/NO/cGMP/K+ ATP signaling pathway. Inflammopharmacology 28(6):1623–1631. https://doi.org/10.1007/s10787-020-00729-z

    Article  CAS  PubMed  Google Scholar 

  44. Unitt J, Hornigold D (2011) Plant lectins are novel Toll-like receptor agonists. Biochem Pharmacol 81(11):1324–1328. https://doi.org/10.1016/j.bcp.2011.03.010

    Article  CAS  PubMed  Google Scholar 

  45. Almeida AC, Osterne VJS, Santiago MQ, Pinto-Junior VR, Silva-Filho JC, Lossio CF, Nascimento FLF, Almeida RPH, Teixeira CS, Leal RB, Delatorre P, Rocha BAM, Assreuy AMS, Nascimento KS, Sousa Cavada BS (2016) Structural analysis of Centrolobium tomentosum seed lectin with inflammatory activity. Arch Biochem Biophys 596:73–83. https://doi.org/10.1016/j.abb.2016.03.001

    Article  CAS  PubMed  Google Scholar 

  46. Cavada BS, Araripe DA, Silva IB, Pinto-Junior VR, Osterne VJS, Neco AHB, Laranjeira EPP, Lossio CF, Correia JLA, Pires AF, Assreuy AMS, Nascimento KS (2018) Structural studies and nociceptive activity of a native lectin from Platypodium elegans seeds (nPELa). Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2017.08.174

    Article  PubMed  Google Scholar 

  47. Neco AHB, Pinto-Junior VR, Araripe DA, Santiago MQ, Osterne VJS, Lossio CF, Nobre CAS, Oliveira MV, Silva MTL, Martins MGQ, Cajazeiras JB, Marques GFO, Costa DR, Nascimento KS, Assreuy AMS, Cavada BS (2018) Structural analysis, molecular docking and molecular dynamics of an edematogenic lectin from Centrolobium microchaete seeds. Int J Biol Macromol 117:124–133. https://doi.org/10.1016/j.ijbiomac.2018.05.166

    Article  CAS  PubMed  Google Scholar 

  48. Hamacher J, Stammberger U, Roux J, Kumar S, Yang G, Xiong C, Schmid RA, Fakin RM, Chakraborty T, Hossain HMD, Pittet JF, Wendel A, Black SM, Lucas R (2010) The lectin-like domain of tumor necrosis factor improves lung function after rat lung transplantation–potential role for a reduction in reactive oxygen species generation. Crit Care Med 38(3):871–878. https://doi.org/10.1097/CCM.0b013e3181cdf725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yixin G, Yan Z, Shiliang F, Xiaofeng L, Shouqin L, Mian L (2017) Dynamic contributions of P- and E-selectins to β2-integrin induced neutrophil transmigration. FASEB J 31(1):212–223. https://doi.org/10.1096/fj.201600398RRR

    Article  CAS  Google Scholar 

  50. Matthias K, Sylvain L, Veronica A, Richard DC, Asma N, Charles AP, Jennifer CB (2020) Regulation of neutrophil function by selective targeting of glycan epitopes expressed on the integrin CD11b/CD18. FASEB J 34(2):2326–2343. https://doi.org/10.1096/fj.201902542R

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Conselho Nacional de Desenvolvimento Científico e Tecnológico-CNPq. Cavada BS, Nascimento KS and Assreuy AM are senior investigators of CNPq.

Funding

Conselho Nacional de Desenvolvimento Científico e Tecnológico,308433/2017-3,Ana Maria Sampaio Assreuy

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kyria Santiago do Nascimento or Ana Maria Sampaio Assreuy.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

do Nascimento, F.L.F., de Freitas Pires, A., Mota, M.R.L. et al. The anti-inflamatory effect of Andira anthelmia lectin in rats involves inhibition of the prostanoid pathway, TNF-α and lectin domain. Mol Biol Rep 49, 8847–8857 (2022). https://doi.org/10.1007/s11033-022-07735-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07735-0

Keywords

Navigation