Skip to main content

Advertisement

Log in

The role of PFKFB3 in maintaining colorectal cancer cell proliferation and stemness

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Since generally confronting with the hypoxic and stressful microenvironment, cancer cells alter their glucose metabolism pattern to glycolysis to sustain the continuous proliferation and vigorous biological activities. Bifunctional 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2) isoform 3 (PFKFB3) functions as an effectively modulator of glycolysis and also participates in regulating angiogenesis, cell death and cell stemness. Meanwhile, PFKFB3 is highly expressed in a variety of cancer cells, and can be activated by several regulatory factors, such as hypoxia, inflammation and cellular signals. In colorectal cancer (CRC) cells, PFKFB3 not only has the property of high expression, but also probably relate to inflammation-cancer transformation. Recent studies indicate that PFKFB3 is involved in chemoradiotherapy resistance as well, such as breast cancer, endometrial cancer and CRC. Cancer stem cells (CSCs) are self-renewable cell types that contribute to oncogenesis, metastasis and relapse. Several studies indicate that CSCs utilize glycolysis to fulfill their energetic and biosynthetic demands in order to maintain rapid proliferation and adapt to the tumor microenvironment changes. In addition, elevated PFKFB3 has been reported to correlate with self-renewal and metastatic outgrowth in numerous kinds of CSCs. This review summarizes our current understanding of PFKFB3 roles in modulating cancer metabolism to maintain cell proliferation and stemness, and discusses its feasibility as a potential target for the discovery of antineoplastic agents, especially in CRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249. https://doi.org/10.3322/caac.21660

    Article  PubMed  Google Scholar 

  2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424. https://doi.org/10.3322/caac.21492

    Article  PubMed  Google Scholar 

  3. Liu K, Li YC, Chen Y, Shi XB, Xing ZH, He ZJ, Wang ST, Liu WJ, Zhang PW, Yu ZZ et al (2021) AZ32 reverses ABCG2-mediated multidrug resistance in colorectal cancer. Front Oncol 11:680663. https://doi.org/10.3389/Fonc.2021.680663

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zhang B, Liu LT (2021) Autophagy is a double-edged sword in the therapy of colorectal cancer. Oncol Lett 21:378. https://doi.org/10.3892/Ol.2021.12639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ros S, Schulze A (2013) Balancing glycolytic flux: the role of 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatases in cancer metabolism. Cancer Metab 1:8. https://doi.org/10.1186/2049-3002-1-8

    Article  PubMed  PubMed Central  Google Scholar 

  6. TeSlaa T, Teitell MA (2014) Techniques to monitor glycolysis. Methods Enzymol 542:91–114. https://doi.org/10.1016/B978-0-12-416618-9.00005-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Van Schaftingen E, Hue L, Hers HG (1980) Fructose 2,6-bisphosphate, the probably structure of the glucose- and glucagon-sensitive stimulator of phosphofructokinase. Biochem J 192:897–901. https://doi.org/10.1042/bj1920897

    Article  PubMed  PubMed Central  Google Scholar 

  8. Xu Y, An X, Guo X, Habtetsion TG, Wang Y, Xu X, Kandala S, Li Q, Li H, Zhang C et al (2014) Endothelial PFKFB3 plays a critical role in angiogenesis. Arterioscler Thromb Vasc Biol 34:1231–1239. https://doi.org/10.1161/ATVBAHA.113.303041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chesney J, Mitchell R, Benigni F, Bacher M, Spiegel L, Al-Abed Y, Han JH, Metz C, Bucala R (1999) An inducible gene product for 6-phosphofructo-2-kinase with an AU-rich instability element: role in tumor cell glycolysis and the Warburg effect. Proc Natl Acad Sci USA 96:3047–3052. https://doi.org/10.1073/pnas.96.6.3047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lee YH, Li Y, Uyeda K, Hasemann CA (2003) Tissue-specific structure/function differentiation of the liver isoform of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. J Biol Chem 278:523–530. https://doi.org/10.1074/jbc.M209105200

    Article  CAS  PubMed  Google Scholar 

  11. Kim SG, Manes NP, El-Maghrabi MR, Lee YH (2006) Crystal structure of the hypoxia-inducible form of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB3): a possible new target for cancer therapy. J Biol Chem 281:2939–2944. https://doi.org/10.1074/jbc.M511019200

    Article  CAS  PubMed  Google Scholar 

  12. Li L, Lin K, Pilkis J, Correia JJ, Pilkis SJ (1992) Hepatic 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. The role of surface loop basic residues in substrate binding to the fructose-2,6-bisphosphatase domain. J Biol Chem 267:21588–21594

    Article  CAS  Google Scholar 

  13. Manes NP, El-Maghrabi MR (2005) The kinase activity of human brain 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase is regulated via inhibition by phosphoenolpyruvate. Arch Biochem Biophys 438:125–136. https://doi.org/10.1016/j.abb.2005.04.011

    Article  CAS  PubMed  Google Scholar 

  14. Lin K, Li L, Correia JJ, Pilkis SJ (1992) Glu327 is part of a catalytic triad in rat liver fructose-2,6-bisphosphatase. J Biol Chem 267:6556–6562

    Article  CAS  Google Scholar 

  15. Kotowski K, Rosik J, Machaj F, Supplitt S, Wiczew D, Jablonska K, Wiechec E, Ghavami S, Dziegiel P (2021) Role of PFKFB3 and PFKFB4 in cancer: genetic basis, impact on disease development/progression, and potential as therapeutic targets. Cancers (Basel). https://doi.org/10.3390/cancers13040909

    Article  Google Scholar 

  16. Lu L, Chen Y, Zhu Y (2017) The molecular basis of targeting PFKFB3 as a therapeutic strategy against cancer. Oncotarget 8:62793–62802. https://doi.org/10.18632/oncotarget.19513

    Article  PubMed  PubMed Central  Google Scholar 

  17. Shi L, Pan H, Liu Z, Xie J, Han W (2017) Roles of PFKFB3 in cancer. Signal Transduct Target Ther 2:17044. https://doi.org/10.1038/sigtrans.2017.44

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bando H, Atsumi T, Nishio T, Niwa H, Mishima S, Shimizu C, Yoshioka N, Bucala R, Koike T (2005) Phosphorylation of the 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase/PFKFB3 family of glycolytic regulators in human cancer. Clin Cancer Res 11:5784–5792. https://doi.org/10.1158/1078-0432.CCR-05-0149

    Article  CAS  PubMed  Google Scholar 

  19. Huang J, Yang M, Liu Z, Li X, Wang J, Fu N, Cao T, Yang X (2021) PPFIA4 promotes colon cancer cell proliferation and migration by enhancing tumor glycolysis. Front Oncol 11:653200. https://doi.org/10.3389/fonc.2021.653200

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chen WC, Wang CY, Hung YH, Weng TY, Yen MC, Lai MD (2016) Systematic analysis of gene expression alterations and clinical outcomes for long-chain acyl-coenzyme a synthetase family in cancer. PLoS ONE 11:e0155660. https://doi.org/10.1371/journal.pone.0155660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yu H, Zhang H, Dong M, Wu Z, Shen Z, Xie Y, Kong Z, Dai X, Xu B (2017) Metabolic reprogramming and AMPKalpha1 pathway activation by caulerpin in colorectal cancer cells. Int J Oncol 50:161–172. https://doi.org/10.3892/ijo.2016.3794

    Article  CAS  PubMed  Google Scholar 

  22. Deng X, Li D, Ke X, Wang Q, Yan S, Xue Y, Wang Q, Zheng H (2021) Mir-488 alleviates chemoresistance and glycolysis of colorectal cancer by targeting PFKFB3. J Clin Lab Anal 35:e23578. https://doi.org/10.1002/jcla.23578

    Article  CAS  PubMed  Google Scholar 

  23. Ramos H, Calheiros J, Almeida J, Barcherini V, Santos S, Carvalho ATP, Santos MMM, Saraiva L (2020) SLMP53-1 inhibits tumor cell growth through regulation of glucose metabolism and angiogenesis in a P53-dependent manner. Int J Mol Sci 21:596. https://doi.org/10.3390/Ijms21020596

    Article  CAS  PubMed Central  Google Scholar 

  24. Yalcin A, Clem BF, Simmons A, Lane A, Nelson K, Clem AL, Brock E, Siow D, Wattenberg B, Telang S, Chesney J (2009) Nuclear targeting of 6-phosphofructo-2-kinase (PFKFB3) increases proliferation via cyclin-dependent kinases. J Biol Chem 284:24223–24232. https://doi.org/10.1074/jbc.M109.016816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yan S, Wei X, Xu S, Sun H, Wang W, Liu L, Jiang X, Zhang Y, Che Y (2017) 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase isoform 3 spatially mediates autophagy through the AMPK signaling pathway. Oncotarget 8:80909–80922. https://doi.org/10.18632/oncotarget.20757

    Article  PubMed  PubMed Central  Google Scholar 

  26. Li FL, Liu JP, Bao RX, Yan G, Feng X, Xu YP, Sun YP, Yan W, Ling ZQ, Xiong Y et al (2018) Acetylation accumulates PFKFB3 in cytoplasm to promote glycolysis and protects cells from cisplatin-induced apoptosis. Nat Commun 9:508. https://doi.org/10.1038/s41467-018-02950-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Straus DS (2013) TNFalpha and IL-17 cooperatively stimulate glucose metabolism and growth factor production in human colorectal cancer cells. Mol Cancer 12:78. https://doi.org/10.1186/1476-4598-12-78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Horvathova J, Moravcik R, Matuskova M, Sisovsky V, Bohac A, Zeman M (2021) Inhibition of glycolysis suppresses cell proliferation and tumor progression in vivo: perspectives for chronotherapy. Int J Mol Sci. https://doi.org/10.3390/ijms22094390

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lea MA, Guzman Y, Desbordes C (2016) Inhibition of growth by combined treatment with inhibitors of lactate dehydrogenase and either phenformin or inhibitors of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3. Anticancer Res 36:1479–1488

    CAS  PubMed  Google Scholar 

  30. Wang G, Wang YZ, Yu Y, Wang JJ, Yin PH, Xu K (2020) Triterpenoids extracted from rhus chinensis mill act against colorectal cancer by inhibiting enzymes in glycolysis and glutaminolysis: network analysis and experimental validation. Nutr Cancer Int J 72:293–319. https://doi.org/10.1080/01635581.2019.1631858

    Article  Google Scholar 

  31. Yan S, Zhou N, Zhang D, Zhang K, Zheng W, Bao Y, Yang W (2019) PFKFB3 inhibition attenuates oxaliplatin-induced autophagy and enhances its cytotoxicity in colon cancer cells. Int J Mol Sci. https://doi.org/10.3390/ijms20215415

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ma HH, Zhang J, Zhou L, Wen SX, Tang HY, Jiang B, Zhang FQ, Suleman M, Sun DC, Chen A et al (2020) c-Src promotes tumorigenesis and tumor progression by activating PFKFB3. Cell Rep 30:4235. https://doi.org/10.1016/j.celrep.2020.03.005

    Article  CAS  PubMed  Google Scholar 

  33. Klarer AC, O’Neal J, Imbert-Fernandez Y, Clem A, Ellis SR, Clark J, Clem B, Chesney J, Telang S (2014) Inhibition of 6-phosphofructo-2-kinase (PFKFB3) induces autophagy as a survival mechanism. Cancer Metab 2:2. https://doi.org/10.1186/2049-3002-2-2

    Article  PubMed  PubMed Central  Google Scholar 

  34. Yan S, Li Q, Zhang D, Wang X, Xu Y, Zhang C, Guo D, Bao Y (2021) Necroptosis pathway blockage attenuates PFKFB3 inhibitor-induced cell viability loss and genome instability in colorectal cancer cells. Am J Cancer Res 11:2062–2080

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Han J, Meng Q, Xi Q, Zhang Y, Zhuang Q, Han Y, Jiang Y, Ding Q, Wu G (2016) Interleukin-6 stimulates aerobic glycolysis by regulating PFKFB3 at early stage of colorectal cancer. Int J Oncol 48:215–224. https://doi.org/10.3892/ijo.2015.3225

    Article  CAS  PubMed  Google Scholar 

  36. Wicha MS, Liu S, Dontu G (2006) Cancer stem cells: an old idea–a paradigm shift. Cancer Res 66:1883–1890. https://doi.org/10.1158/0008-5472.CAN-05-3153 (discussion 1895–1886)

    Article  CAS  PubMed  Google Scholar 

  37. Lim JR, Mouawad J, Gorton OK, Bubb WA, Kwan AH (2021) Cancer stem cell characteristics and their potential as therapeutic targets. Med Oncol 38:76. https://doi.org/10.1007/S12032-021-01524-8

    Article  PubMed  Google Scholar 

  38. Sancho P, Barneda D, Heeschen C (2016) Hallmarks of cancer stem cell metabolism. Br J Cancer 114:1305–1312. https://doi.org/10.1038/bjc.2016.152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Snyder V, Reed-Newman TC, Arnold L, Thomas SM, Anant S (2018) Cancer stem cell metabolism and potential therapeutic targets. Front Oncol 8:203. https://doi.org/10.3389/Fonc.2018.00203

    Article  PubMed  PubMed Central  Google Scholar 

  40. Dong C, Yuan T, Wu Y, Wang Y, Fan TW, Miriyala S, Lin Y, Yao J, Shi J, Kang T et al (2013) Loss of FBP1 by snail-mediated repression provides metabolic advantages in basal-like breast cancer. Cancer Cell 23:316–331. https://doi.org/10.1016/j.ccr.2013.01.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Qiang L, Wu T, Zhang HW, Lu N, Hu R, Wang YJ, Zhao L, Chen FH, Wang XT, You QD, Guo QL (2012) HIF-1 alpha is critical for hypoxia-mediated maintenance of glioblastoma stem cells by activating Notch signaling pathway. Cell Death And Differ 19:284–294. https://doi.org/10.1038/cdd.2011.95

    Article  CAS  Google Scholar 

  42. Semenza GL (2017) Hypoxia-inducible factors: coupling glucose metabolism and redox regulation with induction of the breast cancer stem cell phenotype. EMBO J 36:252–259. https://doi.org/10.15252/embj.201695204

    Article  CAS  PubMed  Google Scholar 

  43. Kondoh H, Lleonart ME, Gil J, Wang J, Degan P, Peters G, Martinez D, Carnero A, Beach D (2005) Glycolytic enzymes can modulate cellular life span. Can Res 65:177–185

    Article  CAS  Google Scholar 

  44. Dianat-Moghadam H, Khalili M, Keshavarz M, Azizi M, Hamishehkar H, Rahbarghazi R, Nouri M (2021) Modulation of LXR signaling altered the dynamic activity of human colon adenocarcinoma cancer stem cells in vitro. Cancer Cell Int 21:100. https://doi.org/10.1186/s12935-021-01803-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ma TH, Li J, Xu Y, Yu C, Xu T, Wang HX, Liu K, Cao N, Nie BM, Zhu SY et al (2015) Atg5-independent autophagy regulates mitochondrial clearance and is essential for iPSC reprogramming. Nat Cell Biol 17:1379–1387. https://doi.org/10.1038/ncb3256

    Article  CAS  PubMed  Google Scholar 

  46. Cieslar-Pobuda A, Jain MV, Kratz G, Rzeszowska-Wolny J, Ghavami S, Wiechec E (2015) The expression pattern of PFKFB3 enzyme distinguishes between induced-pluripotent stem cells and cancer stem cells. Oncotarget 6:29753–29770. https://doi.org/10.18632/oncotarget.4995

    Article  PubMed  PubMed Central  Google Scholar 

  47. La Belle FA, Calhoun BC, Sharma A, Chang JC, Almasan A, Schiemann WP (2019) Autophagy inhibition elicits emergence from metastatic dormancy by inducing and stabilizing Pfkfb3 expression. Nat Commun 10:3668. https://doi.org/10.1038/s41467-019-11640-9

    Article  CAS  Google Scholar 

  48. Truong TH, Benner EA, Hagen KM, Temiz NA, Kerkvliet CP, Wang Y, Cortes-Sanchez E, Yang CH, Pengo T, Guillen KP et al (2021) PELP1/SRC-3-dependent regulation of metabolic PFKFB kinases drives therapy resistant ER+ breast cancer. Oncogene 40:4384–4397. https://doi.org/10.1038/s41388-021-01871-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Marotta LL, Almendro V, Marusyk A, Shipitsin M, Schemme J, Walker SR, Bloushtain-Qimron N, Kim JJ, Choudhury SA, Maruyama R et al (2011) The JAK2/STAT3 signaling pathway is required for growth of CD44(+)CD24(-) stem cell-like breast cancer cells in human tumors. J Clin Investig 121:2723–2735. https://doi.org/10.1172/JCI44745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shipitsin M, Campbell LL, Argani P, Werernowicz S, Bloushtain-Qimron N, Yao J, Nikolskaya T, Serebryiskaya T, Beroukhim R, Hu M et al (2007) Molecular definition of breast tumor heterogeneity. Cancer Cell 11:259–273. https://doi.org/10.1016/j.ccr.2007.01.013

    Article  CAS  PubMed  Google Scholar 

  51. Zhang LX, Sun HF, Zhao FY, Lu P, Ge C, Li H, Hou HL, Yan MX, Chen TY, Jiang GP et al (2012) BMP4 administration induces differentiation of CD133(+) hepatic cancer stem cells, blocking their contributions to hepatocellular carcinoma. Cancer Res 72:4276–4285. https://doi.org/10.1158/0008-5472.CAN-12-1013

    Article  CAS  PubMed  Google Scholar 

  52. Zhong J, Kang Q, Cao Y, He B, Zhao P, Gou Y, Luo Y, He TC, Fan J (2021) BMP4 augments the survival of hepatocellular carcinoma (HCC) cells under hypoxia and hypoglycemia conditions by promoting the glycolysis pathway. Am J Cancer Res 11:793–811

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Rodriguez-Garcia A, Samso P, Fontova P, Simon-Molas H, Manzano A, Castano E, Rosa JL, Martinez-Outshoorn U, Ventura F, Navarro-Sabate A, Bartrons R (2017) TGF-beta1 targets Smad, p38 MAPK, and PI3K/Akt signaling pathways to induce PFKFB3 gene expression and glycolysis in glioblastoma cells. FEBS J 284:3437–3454. https://doi.org/10.1111/febs.14201

    Article  CAS  PubMed  Google Scholar 

  54. Gu Y, Ji F, Liu N, Zhao Y, Wei X, Hu S, Jia W, Wang XW, Budhu A, Ji J et al (2020) Loss of miR-192-5p initiates a hyperglycolysis and stemness positive feedback in hepatocellular carcinoma. J Exp Clin Cancer Res 39:268. https://doi.org/10.1186/s13046-020-01785-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hamanaka RB, Mutlu GM (2017) PFKFB3, a direct target of p63, is required for proliferation and inhibits differentiation in epidermal keratinocytes. J Investig Dermatol 137:1267–1276. https://doi.org/10.1016/j.jid.2016.12.020

    Article  CAS  PubMed  Google Scholar 

  56. Repele A, Lupi R, Eaton S, Urbani L, De Coppi P, Campanella M (2013) Cell metabolism sets the differences between subpopulations of satellite cells (SCs). BMC Cell Biol 14:24. https://doi.org/10.1186/1471-2121-14-24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Li X, Wu L, Zopp M, Kopelov S, Du W (2019) p53-TP53-induced glycolysis regulator mediated glycolytic suppression attenuates DNA damage and genomic instability in fanconi anemia hematopoietic stem cells. Stem Cells 37:937–947. https://doi.org/10.1002/stem.3015

    Article  CAS  PubMed  Google Scholar 

  58. Rao TN, Hansen N, Hilfiker J, Rai S, Majewska JM, Lekovic D, Gezer D, Andina N, Galli S, Cassel T et al (2019) JAK2-mutant hematopoietic cells display metabolic alterations that can be targeted to treat myeloproliferative neoplasms. Blood 134:1832–1846. https://doi.org/10.1182/blood.2019000162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Li HM, Yang JG, Liu ZJ, Wang WM, Yu ZL, Ren JG, Chen G, Zhang W, Jia J (2017) Blockage of glycolysis by targeting PFKFB3 suppresses tumor growth and metastasis in head and neck squamous cell carcinoma. J Exp Clin Cancer Res 36:7. https://doi.org/10.1186/s13046-016-0481-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW et al (2018) Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018. Cell Death Differ 25:486–541. https://doi.org/10.1038/s41418-017-0012-4

    Article  PubMed  PubMed Central  Google Scholar 

  61. Strasser A, Vaux DL (2020) Cell death in the origin and treatment of cancer. Mol Cell 78:1045–1054. https://doi.org/10.1016/j.molcel.2020.05.014

    Article  CAS  PubMed  Google Scholar 

  62. Klionsky DJ, Emr SD (2000) Autophagy as a regulated pathway of cellular degradation. Science 290:1717–1721. https://doi.org/10.1126/science.290.5497.1717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Arozena AA, Adachi H, Adams CM, Adams PD, Adeli K et al (2016) Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12:1–222. https://doi.org/10.1080/15548627.2015.1100356

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lee MJ, Lee JH, Rubinsztein DC (2013) Tau degradation: the ubiquitin-proteasome system versus the autophagy-lysosome system. Prog Neurobiol 105:49–59. https://doi.org/10.1016/j.pneurobio.2013.03.001

    Article  CAS  PubMed  Google Scholar 

  65. Marshall RS, Li F, Gemperline DC, Book AJ, Vierstra RD (2015) Autophagic degradation of the 26S proteasome is mediated by the dual ATG8/ubiquitin receptor RPN10 in Arabidopsis. Mol Cell 58:1053–1066. https://doi.org/10.1016/j.molcel.2015.04.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Boya P, Gonzalez-Polo RA, Casares N, Perfettini JL, Dessen P, Larochette N, Metivier D, Meley D, Souquere S, Yoshimori T et al (2005) Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol 25:1025–1040. https://doi.org/10.1128/MCB.25.3.1025-1040.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Nikoletopoulou V, Markaki M, Palikaras K, Tavernarakis N (2013) Crosstalk between apoptosis, necrosis and autophagy. Biochim Biophys Acta 1833:3448–3459. https://doi.org/10.1016/j.bbamcr.2013.06.001

    Article  CAS  PubMed  Google Scholar 

  68. Denton D, Nicolson S, Kumar S (2012) Cell death by autophagy: facts and apparent artefacts. Cell Death Differ 19:87–95. https://doi.org/10.1038/cdd.2011.146

    Article  CAS  PubMed  Google Scholar 

  69. Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, Adachi H, Adams CM, Adams PD, Adeli K et al (2016) Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12:1–222. https://doi.org/10.1080/15548627.2015.1100356

    Article  PubMed  PubMed Central  Google Scholar 

  70. Yi M, Ban YY, Tan YX, Xiong W, Li GY, Xiang B (2019) 6-Phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 and 4: a pair of valves for fine-tuning of glucose metabolism in human cancer. Mol Metab 20:1–13. https://doi.org/10.1016/j.molmet.2018.11.013

    Article  CAS  PubMed  Google Scholar 

  71. Yang Z, Fujii H, Mohan SV, Goronzy JJ, Weyand CM (2013) Phosphofructokinase deficiency impairs ATP generation, autophagy, and redox balance in rheumatoid arthritis T cells. J Exp Med 210:2119–2134. https://doi.org/10.1084/jem.20130252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yang Z, Goronzy JJ, Weyand CM (2014) The glycolytic enzyme PFKFB3/phosphofructokinase regulates autophagy. Autophagy 10:382–383. https://doi.org/10.4161/auto.27345

    Article  CAS  PubMed  Google Scholar 

  73. Lu Q, Yan S, Sun H, Wang W, Li Y, Yang X, Jiang X, Che Y, Xi Z (2015) Akt inhibition attenuates rasfonin-induced autophagy and apoptosis through the glycolytic pathway in renal cancer cells. Cell Death Dis 6:E2005. https://doi.org/10.1038/Cddis.2015.344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Desideri E, Vegliante R, Cardaci S, Nepravishta R, Paci M, Ciriolo MR (2014) MAPK14/p38alpha-dependent modulation of glucose metabolism affects ROS levels and autophagy during starvation. Autophagy 10:1652–1665. https://doi.org/10.4161/auto.29456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lypova N, Dougherty SM, Lanceta L, Chesney J, Imbert-Fernandez Y (2021) PFKFB3 inhibition impairs erlotinib-induced autophagy in NSCLCs. Cells 10:1679. https://doi.org/10.3390/Cells10071679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Mondal S, Roy D, Sarkar Bhattacharya S, Jin L, Jung D, Zhang S, Kalogera E, Staub J, Wang Y, Xuyang W et al (2019) Therapeutic targeting of PFKFB3 with a novel glycolytic inhibitor PFK158 promotes lipophagy and chemosensitivity in gynecologic cancers. Int J Cancer 144:178–189. https://doi.org/10.1002/ijc.31868

    Article  CAS  PubMed  Google Scholar 

  77. Xiao Y, Jin L, Deng C, Guan Y, Kalogera E, Ray U, Thirusangu P, Staub J, Sarkar Bhattacharya S, Xu H et al (2021) Inhibition of PFKFB3 induces cell death and synergistically enhances chemosensitivity in endometrial cancer. Oncogene 40:1409–1424. https://doi.org/10.1038/s41388-020-01621-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhu Z, Liu Q, Sun J, Bao Z, Wang W (2021) Silencing of PFKFB3 protects podocytes against high glucoseinduced injury by inducing autophagy. Mol Med Rep. https://doi.org/10.3892/mmr.2021.12405

    Article  PubMed  PubMed Central  Google Scholar 

  79. Wang H, Sun L, Su L, Rizo J, Liu L, Wang LF, Wang FS, Wang X (2014) Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol Cell 54:133–146. https://doi.org/10.1016/j.molcel.2014.03.003

    Article  CAS  PubMed  Google Scholar 

  80. Vitale I, Galluzzi L, Castedo M, Kroemer G (2011) Mitotic catastrophe: a mechanism for avoiding genomic instability. Nat Rev Mol Cell Biol 12:384–391. https://doi.org/10.1038/nrm3115

    Article  CAS  Google Scholar 

  81. Domenech E, Maestre C, Esteban-Martinez L, Partida D, Pascual R, Fernandez-Miranda G, Seco E, Campos-Olivas R, Perez M, Megias D et al (2015) AMPK and PFKFB3 mediate glycolysis and survival in response to mitophagy during mitotic arrest. Nat Cell Biol 17:1304–1316. https://doi.org/10.1038/ncb3231

    Article  CAS  PubMed  Google Scholar 

  82. Taylor C, Mannion D, Miranda F, Karaminejadranjbar M, Herrero-Gonzalez S, Hellner K, Zheng Y, Bartholomeusz G, Bast RC Jr, Ahmed AA (2017) Loss of PFKFB4 induces cell death in mitotically arrested ovarian cancer cells. Oncotarget 8:17960–17980. https://doi.org/10.18632/oncotarget.14910

    Article  PubMed  PubMed Central  Google Scholar 

  83. Rubio-Araiz A, Finucane OM, Keogh S, Lynch MA (2018) Anti-TLR2 antibody triggers oxidative phosphorylation in microglia and increases phagocytosis of beta-amyloid. J Neuroinflamm 15:247. https://doi.org/10.1186/S12974-018-1281-7

    Article  Google Scholar 

  84. Mela V, Mota BC, Milner M, McGinley A, Mills KHG, Kelly AM, Lynch MA (2020) Exercise-induced re-programming of age-related metabolic changes in microglia is accompanied by a reduction in senescent cells. Brain Behav Immun 87:413–428. https://doi.org/10.1016/j.bbi.2020.01.012

    Article  CAS  PubMed  Google Scholar 

  85. Clem B, Telang S, Clem A, Yalcin A, Meier J, Simmons A, Rasku MA, Arumugam S, Dean WL, Eaton J et al (2008) Small-molecule inhibition of 6-phosphofructo-2-kinase activity suppresses glycolytic flux and tumor growth. Mol Cancer Ther 7:110–120. https://doi.org/10.1158/1535-7163.MCT-07-0482

    Article  CAS  PubMed  Google Scholar 

  86. Emini Veseli B, Perrotta P, Van Wielendaele P, Lambeir AM, Abdali A, Bellosta S, Monaco G, Bultynck G, Martinet W, De Meyer GRY (2020) Small molecule 3PO inhibits glycolysis but does not bind to 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3). FEBS Lett 594:3067–3075. https://doi.org/10.1002/1873-3468.13878

    Article  CAS  PubMed  Google Scholar 

  87. Schoors S, De Bock K, Cantelmo AR, Georgiadou M, Ghesquiere B, Cauwenberghs S, Kuchnio A, Wong BW, Quaegebeur A, Goveia J et al (2014) Partial and transient reduction of glycolysis by PFKFB3 blockade reduces pathological angiogenesis. Cell Metab 19:37–48. https://doi.org/10.1016/j.cmet.2013.11.008

    Article  CAS  PubMed  Google Scholar 

  88. Clem BF, O’Neal J, Tapolsky G, Clem AL, Imbert-Fernandez Y, Kerr DA 2nd, Klarer AC, Redman R, Miller DM, Trent JO et al (2013) Targeting 6-phosphofructo-2-kinase (PFKFB3) as a therapeutic strategy against cancer. Mol Cancer Ther 12:1461–1470. https://doi.org/10.1158/1535-7163.MCT-13-0097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhu W, Ye L, Zhang J, Yu P, Wang H, Ye Z, Tian J (2016) PFK15, a small molecule inhibitor of PFKFB3, induces cell cycle arrest, apoptosis and inhibits invasion in gastric cancer. PLoS ONE 11:e0163768. https://doi.org/10.1371/journal.pone.0163768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wang C, Qu J, Yan S, Gao Q, Hao S, Zhou D (2018) PFK15, a PFKFB3 antagonist, inhibits autophagy and proliferation in rhabdomyosarcoma cells. Int J Mol Med 42:359–367. https://doi.org/10.3892/ijmm.2018.3599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sarkar Bhattacharya S, Thirusangu P, Jin L, Roy D, Jung D, Xiao Y, Staub J, Roy B, Molina JR, Shridhar V (2019) PFKFB3 inhibition reprograms malignant pleural mesothelioma to nutrient stress-induced macropinocytosis and ER stress as independent binary adaptive responses. Cell Death Dis 10:725. https://doi.org/10.1038/s41419-019-1916-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gustafsson NMS, Farnegardh K, Bonagas N, Ninou AH, Groth P, Wiita E, Jonsson M, Hallberg K, Lehto J, Pennisi R et al (2018) Targeting PFKFB3 radiosensitizes cancer cells and suppresses homologous recombination. Nat Commun 9:3872. https://doi.org/10.1038/s41467-018-06287-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ninou AH, Lehto J, Chioureas D, Stigsdotter H, Schelzig K, Akerlund E, Gudoityte G, Joneborg U, Carlson J, Jonkers J et al (2021) PFKFB3 inhibition sensitizes DNA crosslinking chemotherapies by suppressing fanconi anemia repair. Cancers 13:3604. https://doi.org/10.3390/Cancers13143604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. De Oliveira T, Goldhardt T, Edelmann M, Rogge T, Rauch K, Kyuchukov ND, Menck K, Bleckmann A, Kalucka J, Khan S et al (2021) Effects of the novel PFKFB3 inhibitor KAN0438757 on colorectal cancer cells and its systemic toxicity evaluation in vivo. Cancers 13:1011. https://doi.org/10.3390/Cancers13051011

    Article  PubMed  PubMed Central  Google Scholar 

  95. Burmistrova O, Olias-Arjona A, Lapresa R, Jimenez-Blasco D, Eremeeva T, Shishov D, Romanov S, Zakurdaeva K, Almeida A, Fedichev PO, Bolanos JP (2019) Targeting PFKFB3 alleviates cerebral ischemia-reperfusion injury in mice. Sci Rep 9:11670. https://doi.org/10.1038/s41598-019-48196-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Emini Veseli B, Van Wielendaele P, Delibegovic M, Martinet W, De Meyer GRY (2021) The PFKFB3 inhibitor AZ67 inhibits angiogenesis independently of glycolysis inhibition. Int J Mol Sci 22:5970. https://doi.org/10.3390/ijms22115970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wang YH, Qu C, Liu TT, Wang CH (2020) PFKFB3 inhibitors as potential anticancer agents: mechanisms of action, current developments, and structure-activity relationships. Eur J Med Chem 203:112612. https://doi.org/10.1016/J.Ejmech.2020.112612

    Article  CAS  PubMed  Google Scholar 

  98. Su J, Song Q, Qasem S, O’Neill S, Lee J, Furdui CM, Pasche B, Metheny-Barlow L, Masters AH, Lo HW et al (2020) Multi-omics analysis of brain metastasis outcomes following craniotomy. Front Oncol 10:615472. https://doi.org/10.3389/fonc.2020.615472

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by Grants from the National Natural Science Foundation of China (31801169), and the Faculty Start-up Funds from Jining Medical University (to SY).

Author information

Authors and Affiliations

Authors

Contributions

Conception: SY. Investigation: SY, QL and SL. Original manuscript drafting: SY and QL. Figure and table construction: QL and SL. Manuscript amending: ZA and DY. All authors contributed to the article and approved the submitted version.

Corresponding author

Correspondence to Siyuan Yan.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, S., Li, Q., Li, S. et al. The role of PFKFB3 in maintaining colorectal cancer cell proliferation and stemness. Mol Biol Rep 49, 9877–9891 (2022). https://doi.org/10.1007/s11033-022-07513-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07513-y

Keywords

Navigation