Skip to main content
Log in

RETRACTED ARTICLE: Relationship between the development of hyperlipidemia in hypothyroidism patients

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

This article was retracted on 07 February 2023

This article has been updated

Abstract

As shown in the previous studies, hypothyroidism (HT) is identified to be closely associated with the elevated plasma levels of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), triglyceride (TG), and with the decreased plasma levels of high density lipoprotein cholesterol (HDL-C). On the other hand, the thyroid hormone (TH), which has been considered as a vital hormone produced and released by the thyroid gland, are well-established to regulate the metabolism of plasma TC; whereas other evidence proposed that the thyroid-stimulating hormone (TSH) also regulated the plasma cholesterol metabolism independently of the TH, which further promotes the progression of hyperlipidemia. Nevertheless, the potential mechanism is still not illustrated. It is worth noting that several studies has found that the progression of HT-induced hyperlipidemia might be associated with the down-regulated plasma levels of TH and the up-regulated plasma levels of TSH, revealing that HT could promote hyperlipidemia and its related cardio-metabolic disorders. Otherwise, multiple novel identified plasma proteins, such as proprotein convertase subtilisin/kexin type 9 (PCSK9), angiopoietin-like protein (ANGPTLs), and fibroblast growth factors (FGFs), have also been demonstrated to embrace a vital function in modulating the progression of hyperlipidemia induced by HT. In the present comprehensive review, the recent findings which elucidated the association of HT and the progression of hyperlipidemia were summarized. Furthermore, other results which illustrated the underlying mechanisms by which HT facilitates the progression of hyperlipidemia and its cardio-metabolic disorders are also listed in the current review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Change history

Abbreviations

LDL-C:

low-density lipoprotein cholesterol

VLDL-C:

very low-density lipoprotein cholesterol

TG:

triglyceride

TRL:

TG-rich lipoprotein

NO:

nitric oxide

Apo-B:

apolipoprotein B

CM:

chylomicron

LRP1:

low-density lipoprotein receptor related protein 1

CRP:

C-reactive protein

PCSK9:

proprotein convertase subtilisin/kexin type 9

ANGPTL:

angiopoietin-like protein

FGF:

fibroblast growth factor

RLP:

remnant lipoprotein

THR:

thyroid hormones receptor

T3:

triiodothyronine

SREBP:

sterol regulatory element binding protein

References

  1. Lauffer P, Zwaveling-Soonawala N, Naafs JC, Boelen A, van Trotsenburg ASP (2021) Diagnosis and Management of Central Congenital Hypothyroidism. Front Endocrinol (Lausanne) 12:686317

    Article  Google Scholar 

  2. Ejaz M, Kumar P, Thakur M, Bachani P, Naz S, Lal K, Shahid W, Shahid S, Jahangir M, Rizwan A (2021) Comparison of Lipid Profile in Patients With and Without Subclinical Hypothyroidism. Cureus 13(8):e17301

    Google Scholar 

  3. Willard DL, Leung AM, Pearce EN (2014) Thyroid function testing in patients with newly diagnosed hyperlipidemia. JAMA Intern Med 174(2):287–289

    Article  Google Scholar 

  4. Bekkering GE, Agoritsas T, Lytvyn L, Heen AF, Feller M, Moutzouri E, Abdulazeem H, Aertgeerts B, Beecher D, Brito JP, Farhoumand PD, Singh Ospina N, Rodondi N, van Driel M, Wallace E, Snel M, Okwen PM, Siemieniuk R, Vandvik PO, Kuijpers T, Vermandere M (2019) Thyroid hormones treatment for subclinical hypothyroidism: a clinical practice guideline, BMJ 365 l2006

  5. Song Y, Zhao M, Zhang H, Zhang X, Zhao J, Xu J, Gao L (2016) Thyroid-Stimulating Hormone Levels Are Inversely Associated with Serum Total Bile Acid Levels: A Cross-Sectional Study. Endocr Pract 22(4):420–426

    Article  Google Scholar 

  6. Zhao M, Liu L, Wang F, Yuan Z, Zhang X, Xu C, Song Y, Guan Q, Gao L, Shan Z, Zhang H, Zhao J (2016) A Worthy Finding: Decrease in Total Cholesterol and Low-Density Lipoprotein Cholesterol in Treated Mild Subclinical Hypothyroidism. Thyroid 26(8):1019–1029

    Article  CAS  Google Scholar 

  7. Liu FH, Hwang JS, Kuo CF, Ko YS, Chen ST, Lin JD (2018) Subclinical hypothyroidism and metabolic risk factors association: A health examination-based study in northern Taiwan. Biomed J 41(1):52–58

    Article  Google Scholar 

  8. Unal E, Akin A, Yildirim R, Demir V, Yildiz I, Haspolat YK (2017) Association of Subclinical Hypothyroidism with Dyslipidemia and Increased Carotid Intima-Media Thickness in Children. J Clin Res Pediatr Endocrinol 9(2):144–149

    Article  Google Scholar 

  9. Arikan S, Bahceci M, Tuzcu A, Celik F, Gokalp D (2012) Postprandial hyperlipidemia in overt and subclinical hypothyroidism. Eur J Intern Med 23(6):e141–e145

    Article  CAS  Google Scholar 

  10. Dong X, Yao Z, Hu Y, Yang N, Gao X, Xu Y, Wang G (2016) Potential harmful correlation between homocysteine and low-density lipoprotein cholesterol in patients with hypothyroidism. Med (Baltim) 95(29):e4291

    Article  CAS  Google Scholar 

  11. Martin SS, Daya N, Lutsey PL, Matsushita K, Fretz A, McEvoy JW, Blumenthal RS, Coresh J, Greenland P, Kottgen A, Selvin E (2017) Thyroid Function, Cardiovascular Risk Factors, and Incident Atherosclerotic Cardiovascular Disease: The Atherosclerosis Risk in Communities (ARIC) Study. J Clin Endocrinol Metab 102(9):3306–3315

    Article  Google Scholar 

  12. Luxia L, Jingfang L, Songbo F, Xulei T, Lihua M, Weiming S, Ying N, Gaojing J, Qianglong N, Yujuan L, Dan W, Fang Y, Huiping G, Pei S (2021) Correlation Between Serum TSH Levels Within Normal Range and Serum Lipid Profile. Horm Metab Res 53(1):32–40

    Article  CAS  Google Scholar 

  13. Zhang X, Song Y, Feng M, Zhou X, Lu Y, Gao L, Yu C, Jiang X, Zhao J (2015) Thyroid-stimulating hormone decreases HMG-CoA reductase phosphorylation via AMP-activated protein kinase in the liver. J Lipid Res 56(5):963–971

    Article  CAS  Google Scholar 

  14. Dang R, Jiang P, Cai H, Li H, Guo R, Wu Y, Zhang L, Zhu W, He X, Liu Y, Xu P (2015) Vitamin D deficiency exacerbates atypical antipsychotic-induced metabolic side effects in rats: involvement of the INSIG/SREBP pathway. Eur Neuropsychopharmacol 25(8):1239–1247

    Article  CAS  Google Scholar 

  15. Shin DJ, Osborne TF (2003) Thyroid hormone regulation and cholesterol metabolism are connected through Sterol Regulatory Element-Binding Protein-2 (SREBP-2). J Biol Chem 278(36):34114–34118

    Article  CAS  Google Scholar 

  16. Sinha RA, You SH, Zhou J, Siddique MM, Bay BH, Zhu X, Privalsky ML, Cheng SY, Stevens RD, Summers SA, Newgard CB, Lazar MA, Yen PM (2012) Thyroid hormone stimulates hepatic lipid catabolism via activation of autophagy. J Clin Invest 122(7):2428–2438

    Article  CAS  Google Scholar 

  17. McGarry JD, Brown NF (1997) The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis. Eur J Biochem 244(1):1–14

    Article  CAS  Google Scholar 

  18. Zhou J, Dong X, Liu Y, Jia Y, Wang Y, Zhou J, Jiang Z, Chen K (2020) Gestational hypothyroidism elicits more pronounced lipid dysregulation in mice than pre-pregnant hypothyroidism. Endocr J 67(6):593–605

    Article  CAS  Google Scholar 

  19. Davidson NO, Powell LM, Wallis SC, Scott J (1988) Thyroid hormone modulates the introduction of a stop codon in rat liver apolipoprotein B messenger RNA. J Biol Chem 263(27):13482–13485

    Article  CAS  Google Scholar 

  20. Goldberg IJ, Huang LS, Huggins LA, Yu S, Nagareddy PR, Scanlan TS, Ehrenkranz JR (2012) Thyroid hormone reduces cholesterol via a non-LDL receptor-mediated pathway. Endocrinology 153(11):5143–5149

    Article  CAS  Google Scholar 

  21. Lopez D, Abisambra Socarras JF, Bedi M, Ness GC (2007) Activation of the hepatic LDL receptor promoter by thyroid hormone. Biochim Biophys Acta 1771(9):1216–1225

    Article  CAS  Google Scholar 

  22. Dong B, Singh AB, Fung C, Kan K, Liu J (2014) CETP inhibitors downregulate hepatic LDL receptor and PCSK9 expression in vitro and in vivo through a SREBP2 dependent mechanism. Atherosclerosis 235(2):449–462

    Article  CAS  Google Scholar 

  23. Zhou L, Wu K, Zhang L, Gao L, Chen S (2018) Liver-specific deletion of TSHR inhibits hepatic lipid accumulation in mice. Biochem Biophys Res Commun 497(1):39–45

    Article  CAS  Google Scholar 

  24. Tian L, Song Y, Xing M, Zhang W, Ning G, Li X, Yu C, Qin C, Liu J, Tian X, Sun X, Fu R, Zhang L, Zhang X, Lu Y, Zou J, Wang L, Guan Q, Gao L, Zhao J (2010) A novel role for thyroid-stimulating hormone: up-regulation of hepatic 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase expression through the cyclic adenosine monophosphate/protein kinase A/cyclic adenosine monophosphate-responsive element binding protein pathway. Hepatology 52(4):1401–1409

    Article  CAS  Google Scholar 

  25. Moreno-Navarrete JM, Moreno M, Ortega F, Xifra G, Hong S, Asara JM, Serrano JCE, Jove M, Pissios P, Bluher M, Ricart W, Portero-Otin M (2017) Fernandez-Real, TSHB mRNA is linked to cholesterol metabolism in adipose tissue. FASEB J 31(10):4482–4491

    Article  CAS  Google Scholar 

  26. Gagnon A, Antunes TT, Ly T, Pongsuwan P, Gavin C, Lochnan HA, Sorisky A (2010) Thyroid-stimulating hormone stimulates lipolysis in adipocytes in culture and raises serum free fatty acid levels in vivo. Metabolism 59(4):547–553

    Article  CAS  Google Scholar 

  27. Song Y, Xu C, Shao S, Liu J, Xing W, Xu J, Qin C, Li C, Hu B, Yi S, Xia X, Zhang H, Zhang X, Wang T, Pan W, Yu C, Wang Q, Lin X, Wang L, Gao L, Zhao J (2015) Thyroid-stimulating hormone regulates hepatic bile acid homeostasis via SREBP-2/HNF-4alpha/CYP7A1 axis. J Hepatol 62(5):1171–1179

    Article  CAS  Google Scholar 

  28. Gambo Y, Matsumura M, Fujimori K (2016) Triiodothyronine enhances accumulation of intracellular lipids in adipocytes through thyroid hormone receptor alpha via direct and indirect mechanisms. Mol Cell Endocrinol 431:1–11

    Article  CAS  Google Scholar 

  29. Senese R, Cioffi F, de Lange P, Leanza C, Iannucci LF, Silvestri E, Moreno M, Lombardi A, Goglia F, Lanni A (2017) Both 3,5-Diiodo-L-Thyronine and 3,5,3’-Triiodo-L-Thyronine Prevent Short-term Hepatic Lipid Accumulation via Distinct Mechanisms in Rats Being Fed a High-Fat Diet. Front Physiol 8:706

    Article  Google Scholar 

  30. Gauthier K, Billon C, Bissler M, Beylot M, Lobaccaro JM, Vanacker JM, Samarut J (2010) Thyroid hormone receptor beta (TRbeta) and liver X receptor (LXR) regulate carbohydrate-response element-binding protein (ChREBP) expression in a tissue-selective manner. J Biol Chem 285(36):28156–28163

    Article  CAS  Google Scholar 

  31. Sanchez-Gurmaches J, Tang Y, Jespersen NZ, Wallace M, Martinez Calejman C, Gujja S, Li H, Edwards YJK, Wolfrum C, Metallo CM, Nielsen S, Scheele C, Guertin DA (2018) Brown Fat AKT2 Is a Cold-Induced Kinase that Stimulates ChREBP-Mediated De Novo Lipogenesis to Optimize Fuel Storage and Thermogenesis. Cell Metab 27(1):195–209 e6

    Article  CAS  Google Scholar 

  32. Stein S, Stepan H, Kratzsch J, Verlohren M, Verlohren HJ, Drynda K, Lossner U, Bluher M, Stumvoll M, Fasshauer M (2010) Serum fibroblast growth factor 21 levels in gestational diabetes mellitus in relation to insulin resistance and dyslipidemia. Metabolism 59(1):33–37

    Article  CAS  Google Scholar 

  33. Chuang GT, Liu PH, Chyan TW, Huang CH, Huang YY, Lin CH, Lin JW, Hsu CN, Tsai RY, Hsieh ML, Lee HL, Yang WS, Robinson-Cohen C, Hsiung CN, Shen CY, Chang YC (2020) Genome-wide association study for circulating fibroblast growth factor 21 and 23. Sci Rep 10(1):14578

    Article  CAS  Google Scholar 

  34. Wang JG, Guo YZ, Kong YZ, Dai S, Zhao BY (2018) High non-esterified fatty acid concentrations promote expression and secretion of fibroblast growth factor 21 in calf hepatocytes cultured in vitro. J Anim Physiol Anim Nutr (Berl) 102(1):e476–e481

    Article  CAS  Google Scholar 

  35. Xiao F, Zeng J, Huang P, Yan B, Zeng X, Liu C, Shi X, Wang L, Song H, Lin M, Yang S, Li Z, Li X, Liu C (2018) Independent Association of Serum Fibroblast Growth Factor 21 Levels With Impaired Liver Enzymes in Hyperthyroid Patients. Front Endocrinol (Lausanne) 9:800

    Article  Google Scholar 

  36. Lee Y, Park YJ, Ahn HY, Lim JA, Park KU, Choi SH, Park DJ, Oh BC, Jang HC, Yi KH (2013) Plasma FGF21 levels are increased in patients with hypothyroidism independently of lipid profile. Endocr J 60(8):977–983

    Article  CAS  Google Scholar 

  37. Zhang A, Sieglaff DH, York JP, Suh JH, Ayers SD, Winnier GE, Kharitonenkov A, Pin C, Zhang P, Webb P, Xia X (2015) Thyroid hormone receptor regulates most genes independently of fibroblast growth factor 21 in liver. J Endocrinol 224(3):289–301

    Article  CAS  Google Scholar 

  38. Adams AC, Astapova I, Fisher FM, Badman MK, Kurgansky KE, Flier JS, Hollenberg AN (2010) Maratos-Flier, Thyroid hormone regulates hepatic expression of fibroblast growth factor 21 in a PPARalpha-dependent manner. J Biol Chem 285(19):14078–14082

    Article  CAS  Google Scholar 

  39. Chau MD, Gao J, Yang Q, Wu Z, Gromada J (2010) Fibroblast growth factor 21 regulates energy metabolism by activating the AMPK-SIRT1-PGC-1alpha pathway. Proc Natl Acad Sci U S A 107(28):12553–12558

    Article  CAS  Google Scholar 

  40. Domouzoglou EM, Fisher FM, Astapova I, Fox EC, Kharitonenkov A, Flier JS, Hollenberg AN (2014) Maratos-Flier, Fibroblast growth factor 21 and thyroid hormone show mutual regulatory dependency but have independent actions in vivo. Endocrinology 155(5):2031–2040

    Article  Google Scholar 

  41. Xu J, Lloyd DJ, Hale C, Stanislaus S, Chen M, Sivits G, Vonderfecht S, Hecht R, Li YS, Lindberg RA, Chen JL, Jung DY, Zhang Z, Ko HJ, Kim JK, Veniant MM (2009) Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice. Diabetes 58(1):250–259

    Article  CAS  Google Scholar 

  42. Adams AC, Halstead CA, Hansen BC, Irizarry AR, Martin JA, Myers SR, Reynolds VL, Smith HW, Wroblewski VJ, Kharitonenkov A (2013) LY2405319, an Engineered FGF21 Variant, Improves the Metabolic Status of Diabetic Monkeys. PLoS ONE 8(6):e65763

    Article  CAS  Google Scholar 

  43. Veniant MM, Komorowski R, Chen P, Stanislaus S, Winters K, Hager T, Zhou L, Wada R, Hecht R, Xu J (2012) Long-acting FGF21 has enhanced efficacy in diet-induced obese mice and in obese rhesus monkeys. Endocrinology 153(9):4192–4203

    Article  CAS  Google Scholar 

  44. Gaich G, Chien JY, Fu H, Glass LC, Deeg MA, Holland WL, Kharitonenkov A, Bumol T, Schilske HK, Moller DE (2013) The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes. Cell Metab 18(3):333–340

    Article  CAS  Google Scholar 

  45. Iizuka K, Takao K, Kato T, Horikawa Y, Takeda J (2018) ChREBP Reciprocally Regulates Liver and Plasma Triacylglycerol Levels in Different Manners,Nutrients10(11)

  46. Angelin B, Larsson TE, Rudling M (2012) Circulating fibroblast growth factors as metabolic regulators–a critical appraisal. Cell Metab 16(6):693–705

    Article  CAS  Google Scholar 

  47. Lai Y, Wang H, Xia X, Wang Z, Fan C, Wang H, Zhang H, Ding S, Teng W, Shan Z (2016) Serum fibroblast growth factor 19 is decreased in patients with overt hypothyroidism and subclinical hypothyroidism. Med (Baltim) 95(39):e5001

    Article  CAS  Google Scholar 

  48. Miyata M, Hata T, Yamazoe Y, Yoshinari K (2014) SREBP-2 negatively regulates FXR-dependent transcription of FGF19 in human intestinal cells. Biochem Biophys Res Commun 443(2):477–482

    Article  CAS  Google Scholar 

  49. Su X, Nie M, Zhang G, Wang B (2021) MicroRNA in cardio-metabolic disorders. Clin Chim Acta 518:134–141

    Article  CAS  Google Scholar 

  50. Malekmohammad K, Bezsonov EE, Rafieian-Kopaei M (2021) Role of Lipid Accumulation and Inflammation in Atherosclerosis: Focus on Molecular and Cellular Mechanisms. Front Cardiovasc Med 8:707529

    Article  CAS  Google Scholar 

  51. Bhattarai A, Likos EM, Weyman CM, Shukla GC (2021) Regulation of cholesterol biosynthesis and lipid metabolism: A microRNA management perspective. Steroids 173:108878

    Article  CAS  Google Scholar 

  52. Yap CS, Sinha RA, Ota S, Katsuki M, Yen PM (2013) Thyroid hormone negatively regulates CDX2 and SOAT2 mRNA expression via induction of miRNA-181d in hepatic cells. Biochem Biophys Res Commun 440(4):635–639

    Article  CAS  Google Scholar 

  53. Zheng Y, Zhao C, Zhang N, Kang W, Lu R, Wu H, Geng Y, Zhao Y, Xu X (2018) Serum microRNA miR-206 is decreased in hyperthyroidism and mediates thyroid hormone regulation of lipid metabolism in HepG2 human hepatoblastoma cells. Mol Med Rep 17(4):5635–5641

    CAS  Google Scholar 

  54. Brousseau ME, Clairmont KB, Spraggon G, Flyer AN, Golosov AA, Grosche P, Amin J, Andre J, Burdick D, Caplan S, Chen G, Chopra R, Ames L, Dubiel D, Fan L, Gattlen R, Kelly-Sullivan D, Koch AW, Lewis I, Li J, Liu E, Lubicka D, Marzinzik A, Nakajima K, Nettleton D, Ottl J, Pan M, Patel T, Perry L, Pickett S, Poirier J, Reid PC, Pelle X, Seepersaud M, Subramanian V, Vera V, Xu M, Yang L, Yang Q, Yu J, Zhu G, Monovich LG (2021) Identification of a PCSK9-LDLR disruptor peptide with in vivo function,Cell Chem Biol 29(2):249-258.

  55. Chen J, Su Y, Pi S, Hu B, Mao L (2021) The Dual Role of Low-Density Lipoprotein Receptor-Related Protein 1 in Atherosclerosis. Front Cardiovasc Med 8:682389

    Article  CAS  Google Scholar 

  56. Lee JS, Mukhopadhyay P, Matyas C, Trojnar E, Paloczi J, Yang YR, Blank BA, Savage C, Sorokin AV, Mehta NN, Vendruscolo JCM, Koob GF, Vendruscolo LF, Pacher P, Lohoff FW (2019) PCSK9 inhibition as a novel therapeutic target for alcoholic liver disease. Sci Rep 9(1):17167

    Article  Google Scholar 

  57. Gong Y, Ma Y, Ye Z, Fu Z, Yang P, Gao B, Guo W, Hu D, Ye J, Ma S, Zhang F, Zhou L, Xu X, Li Z, Yang T, Zhou H (2017) Thyroid stimulating hormone exhibits the impact on LDLR/LDL-c via up-regulating hepatic PCSK9 expression. Metabolism 76:32–41

    Article  CAS  Google Scholar 

  58. Schaap FG, Rensen PC, Voshol PJ, Vrins C, van der Vliet HN, Chamuleau RA, Havekes LM, Groen AK, van Dijk KW (2004) ApoAV reduces plasma triglycerides by inhibiting very low density lipoprotein-triglyceride (VLDL-TG) production and stimulating lipoprotein lipase-mediated VLDL-TG hydrolysis. J Biol Chem 279(27):27941–27947

    Article  CAS  Google Scholar 

  59. Prieur X, Huby T, Coste H, Schaap FG, Chapman MJ, Rodriguez JC (2005) Thyroid hormone regulates the hypotriglyceridemic gene APOA5. J Biol Chem 280(30):27533–27543

    Article  CAS  Google Scholar 

  60. Martinez-Triguero ML, Hernandez-Mijares A, Nguyen TT, Munoz ML, Pena H, Morillas C, Lorente D, Lluch I, Molina E (1998) Effect of thyroid hormone replacement on lipoprotein(a), lipids, and apolipoproteins in subjects with hypothyroidism. Mayo Clin Proc 73(9):837–841

    Article  CAS  Google Scholar 

  61. Sigal GA, Medeiros-Neto G, Vinagre JC, Diament J, Maranhao RC (2011) Lipid metabolism in subclinical hypothyroidism: plasma kinetics of triglyceride-rich lipoproteins and lipid transfers to high-density lipoprotein before and after levothyroxine treatment. Thyroid 21(4):347–353

    Article  CAS  Google Scholar 

  62. Ito M, Takamatsu J, Sasaki I, Hiraiwa T, Fukao A, Murakami Y, Isotani H, Miyauchi A, Kuma K, Hanafusa T (2004) Disturbed metabolism of remnant lipoproteins in patients with subclinical hypothyroidism. Am J Med 117(9):696–699

    Article  CAS  Google Scholar 

  63. Moon JH, Kim HJ, Kim HM, Choi SH, Lim S, Park YJ, Jang HC, Cha BS (2013) Decreased expression of hepatic low-density lipoprotein receptor-related protein 1 in hypothyroidism: a novel mechanism of atherogenic dyslipidemia in hypothyroidism. Thyroid 23(9):1057–1065

    Article  CAS  Google Scholar 

  64. Ma S, Jing F, Xu C, Zhou L, Song Y, Yu C, Jiang D, Gao L, Li Y, Guan Q, Zhao J (2015) Thyrotropin and obesity: increased adipose triglyceride content through glycerol-3-phosphate acyltransferase 3. Sci Rep 5:7633

    Article  CAS  Google Scholar 

  65. Yan F, Wang Q, Lu M, Chen W, Song Y, Jing F, Guan Y, Wang L, Lin Y, Bo T, Zhang J, Wang T, Xin W, Yu C, Guan Q, Zhou X, Gao L, Xu C, Zhao J (2014) Thyrotropin increases hepatic triglyceride content through upregulation of SREBP-1c activity. J Hepatol 61(6):1358–1364

    Article  CAS  Google Scholar 

  66. Jung KY, Ahn HY, Han SK, Park YJ, Cho BY, Moon MK (2017) Association between thyroid function and lipid profiles, apolipoproteins, and high-density lipoprotein function. J Clin Lipidol 11(6):1347–1353

    Article  Google Scholar 

  67. Su X (2021) ANGPLT3 in cardio-metabolic disorders. Mol Biol Rep 48(3):2729–2739

    Article  CAS  Google Scholar 

  68. Fugier C, Tousaint JJ, Prieur X, Plateroti M, Samarut J, Delerive P (2006) The lipoprotein lipase inhibitor ANGPTL3 is negatively regulated by thyroid hormone. J Biol Chem 281(17):11553–11559

    Article  CAS  Google Scholar 

  69. Tikkanen E, Minicocci I, Hallfors J, Di Costanzo A, D’Erasmo L, Poggiogalle E, Donini LM, Wurtz P, Jauhiainen M, Olkkonen VM, Arca M (2019) Metabolomic Signature of Angiopoietin-Like Protein 3 Deficiency in Fasting and Postprandial State. Arterioscler Thromb Vasc Biol 39(4):665–674

    Article  CAS  Google Scholar 

  70. Yang L, Yin R, Wang Z, Wang X, Zhang Y, Zhao D (2019) Circulating Angptl3 and Angptl8 Are Increased in Patients with Hypothyroidism. Biomed Res Int 2019:3814687

    Article  Google Scholar 

  71. Chung HS, Lee MJ, Hwang SY, Lee HJ, Yoo HJ, Seo JA, Kim SG, Kim NH, Baik SH, Choi DS, Kim SM, Choi KM (2016) Circulating angiopoietin-like protein 8 (ANGPTL8) and ANGPTL3 concentrations in relation to anthropometric and metabolic profiles in Korean children: a prospective cohort study. Cardiovasc Diabetol 15:1

    Article  Google Scholar 

  72. Gusarova V, Banfi S, Alexa-Braun CA, Shihanian LM, Mintah IJ, Lee JS, Xin Y, Su Q, Kamat V, Cohen JC, Hobbs HH, Zambrowicz B, Yancopoulos GD, Murphy AJ, Gromada J (2017) ANGPTL8 Blockade With a Monoclonal Antibody Promotes Triglyceride Clearance, Energy Expenditure, and Weight Loss in Mice. Endocrinology 158(5):1252–1259

    Article  CAS  Google Scholar 

  73. Tseng YH, Ke PY, Liao CJ, Wu SM, Chi HC, Tsai CY, Chen CY, Lin YH, Lin KH (2014) Chromosome 19 open reading frame 80 is upregulated by thyroid hormone and modulates autophagy and lipid metabolism. Autophagy 10(1):20–31

    Article  CAS  Google Scholar 

  74. Quagliarini F, Wang Y, Kozlitina J, Grishin NV, Hyde R, Boerwinkle E, Valenzuela DM, Murphy AJ, Cohen JC, Hobbs HH (2012) Atypical angiopoietin-like protein that regulates ANGPTL3. Proc Natl Acad Sci U S A 109(48):19751–19756

    Article  CAS  Google Scholar 

  75. Izumi R, Kusakabe T, Noguchi M, Iwakura H, Tanaka T, Miyazawa T, Aotani D, Hosoda K, Kangawa K, Nakao K (2018) CRISPR/Cas9-mediated Angptl8 knockout suppresses plasma triglyceride concentrations and adiposity in rats. J Lipid Res 59(9):1575–1585

    Article  CAS  Google Scholar 

  76. Haller JF, Mintah IJ, Shihanian LM, Stevis P, Buckler D, Alexa-Braun CA, Kleiner S, Banfi S, Cohen JC, Hobbs HH, Yancopoulos GD, Murphy AJ, Gusarova V, Gromada J (2017) ANGPTL8 requires ANGPTL3 to inhibit lipoprotein lipase and plasma triglyceride clearance. J Lipid Res 58(6):1166–1173

    Article  CAS  Google Scholar 

  77. Oike Y, Yasunaga K, Ito Y, Matsumoto S, Maekawa H, Morisada T, Arai F, Nakagata N, Takeya M, Masuho Y, Suda T (2003) Angiopoietin-related growth factor (AGF) promotes epidermal proliferation, remodeling, and regeneration. Proc Natl Acad Sci U S A 100(16):9494–9499

    Article  CAS  Google Scholar 

  78. Lim JA, Kim HJ, Ahn HY, Park KU, Yi KH, Park DJ, Jang HC, Park YJ (2015) Influence of thyroid dysfunction on serum levels of angiopoietin-like protein 6. Metabolism 64(10):1279–1283

    Article  CAS  Google Scholar 

  79. Namkung J, Sohn JH, Chang JS, Park SW, Kim JY, Koh SB, Kong ID, Park KS (2019) Increased Serum Angiopoietin-Like 6 Ahead of Metabolic Syndrome in a Prospective Cohort Study. Diabetes Metab J 43(4):521–529

    Article  Google Scholar 

  80. Ge H, Yang G, Huang L, Motola DL, Pourbahrami T, Li C (2004) Oligomerization and regulated proteolytic processing of angiopoietin-like protein 4. J Biol Chem 279(3):2038–2045

    Article  CAS  Google Scholar 

  81. Talmud PJ, Smart M, Presswood E, Cooper JA, Nicaud V, Drenos F, Palmen J, Marmot MG, Boekholdt SM, Wareham NJ, Khaw KT, Kumari M, Humphries SE, Consortium E, Consortium H (2008) ANGPTL4 E40K and T266M: effects on plasma triglyceride and HDL levels, postprandial responses, and CHD risk. Arterioscler Thromb Vasc Biol 28(12):2319–2325

    Article  CAS  Google Scholar 

  82. Tg NHL, Hdl, Working Group of the Exome Sequencing Project, Blood I, Crosby J, Peloso GM, Auer PL, Crosslin DR, Stitziel NO, Lange LA, Lu Y, Tang ZZ, Zhang H, Hindy G, Masca N, Stirrups K, Kanoni S, Do R, Jun G, Hu Y, Kang HM, Xue C, Goel A, Farrall M, Duga S, Merlini PA, Asselta R, Girelli D, Olivieri O, Martinelli N, Yin W, Reilly D, Speliotes E, Fox CS, Hveem K, Holmen OL, Nikpay M, Farlow DN, Assimes TL, Franceschini N, Robinson J, North KE, Martin LW, DePristo M, Gupta N, Escher SA, Jansson JH, Van Zuydam N, Palmer CN, Wareham N, Koch W, Meitinger T, Peters A, Lieb W, Erbel R, Konig IR, Kruppa J, Degenhardt F, Gottesman O, Bottinger EP, O’Donnell CJ, Psaty BM, Ballantyne CM, Abecasis G, Ordovas JM, Melander O, Watkins H, Orho-Melander M, Ardissino D, Loos RJ, McPherson R, Willer CJ, Erdmann J, Hall AS, Samani NJ, Deloukas P, Schunkert H, Wilson JG, Kooperberg C, Rich SS, Tracy RP, Lin DY, Altshuler D, Gabriel S, Nickerson DA, Jarvik GP, Cupples LA, Reiner AP (2014) N Engl J Med 371(1):22–31

    Article  Google Scholar 

  83. Boone LR, Lagor WR, Moya Mde L, Niesen MI, Rothblat GH, Ness GC (2011) Thyroid hormone enhances the ability of serum to accept cellular cholesterol via the ABCA1 transporter. Atherosclerosis 218(1):77–82

    Article  CAS  Google Scholar 

  84. Yang N, Yao Z, Miao L, Liu J, Gao X, Xu Y, Wang G (2016) Homocysteine diminishes apolipoprotein A-I function and expression in patients with hypothyroidism: a cross-sectional study. Lipids Health Dis 15:123

    Article  Google Scholar 

  85. Kuusi T, Saarinen P, Nikkila EA (1980) Evidence for the role of hepatic endothelial lipase in the metabolism of plasma high density lipoprotein2 in man. Atherosclerosis 36(4):589–593

    Article  CAS  Google Scholar 

  86. McGowan A, Widdowson WM, O’Regan A, Young IS, Boran G, McEneny J (2016) Gibney, Postprandial Studies Uncover Differing Effects on HDL Particles of Overt and Subclinical Hypothyroidism. Thyroid 26(3):356–364

    Article  CAS  Google Scholar 

  87. Ness GC, Lopez D (1995) Transcriptional regulation of rat hepatic low-density lipoprotein receptor and cholesterol 7 alpha hydroxylase by thyroid hormone. Arch Biochem Biophys 323(2):404–408

    Article  CAS  Google Scholar 

  88. Bonde Y, Plosch T, Kuipers F, Angelin B, Rudling M (2012) Stimulation of murine biliary cholesterol secretion by thyroid hormone is dependent on a functional ABCG5/G8 complex. Hepatology 56(5):1828–1837

    Article  CAS  Google Scholar 

  89. Johansson L, Rudling M, Scanlan TS, Lundasen T, Webb P, Baxter J, Angelin B, Parini P (2005) Selective thyroid receptor modulation by GC-1 reduces serum lipids and stimulates steps of reverse cholesterol transport in euthyroid mice. Proc Natl Acad Sci U S A 102(29):10297–10302

    Article  CAS  Google Scholar 

  90. van der Boom T, Jia C, Lefrandt JD, Connelly MA, Links TP, Tietge UJF, Dullaart RPF (2020) HDL Cholesterol Efflux Capacity is Impaired in Severe Short-Term Hypothyroidism Despite Increased HDL Cholesterol,J Clin Endocrinol Metab105(9):e3355-e3362

Download references

Funding

This work was supported by grants from the Xiamen medical and health guiding project (No. 3502Z20214ZD1181 and No. 3502Z20214ZD1174).

Author information

Authors and Affiliations

Authors

Contributions

X.S. and X.C. contributed to the study design; X.S. and B.W. wrote the manuscript. All authors reviewed drafts and approved the final version of the manuscript.

Corresponding authors

Correspondence to Xiang Chen MD, PhD or Bin Wang MD, PhD.

Ethics declarations

Competing interests

The authors have no other competing interests or conflicts of interest to declare.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article has been retracted. Please see the retraction notice for more detail: https://doi.org/10.1186/s12903-023-02769-7

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, X., Chen, X. & Wang, B. RETRACTED ARTICLE: Relationship between the development of hyperlipidemia in hypothyroidism patients. Mol Biol Rep 49, 11025–11035 (2022). https://doi.org/10.1007/s11033-022-07423-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07423-z

Keywords

Navigation