Skip to main content
Log in

Genetics of atrial fibrillation—an update of recent findings

  • Mini Review Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Atrial fibrillation (AF) is a common cardiac arrhythmia and a major risk factor for stroke, heart failure, and premature death. AF has a strong genetic predisposition. This review highlights the recent findings on the genetics of AF from genome-wide association studies (GWAS) and high-throughput sequencing studies. The consensus from GWAS implies that AF is both polygenic and pleiotropic in nature. With the advent of whole-genome sequencing and whole-exome sequencing, rare variants associated with AF pathogenesis have been identified. The recent studies have contributed towards better understanding of AF pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Chugh SS, Havmoeller R, Narayanan K et al (2014) Worldwide epidemiology of atrial fibrillation: a global burden of disease 2010 study. Circulation 129:837–847. https://doi.org/10.1161/CIRCULATIONAHA.113.005119

    Article  PubMed  Google Scholar 

  2. Camm AJ, Kirchhof P, Lip GYH et al (2010) Guidelines for the management of atrial fibrillation. Eur Heart J 31:2369–2429. https://doi.org/10.1093/eurheartj/ehq278

    Article  PubMed  Google Scholar 

  3. Vermond RA, Geelhoed B, Verweij N et al (2015) Incidence of atrial fibrillation and relationship with cardiovascular events, heart failure, and mortality a community-based study from the Netherlands. J Am Coll Cardiol 66:1000–1007. https://doi.org/10.1016/j.jacc.2015.06.1314

    Article  PubMed  Google Scholar 

  4. Fox CS, Parise H, D’Agostino RB Sr et al (2004) Parental atrial fibrillation as a risk factor for atrial fibrillation in offspring. JAMA 291:2851–2855. https://doi.org/10.1001/jama.291.23.2851

    Article  CAS  PubMed  Google Scholar 

  5. Lubitz SA, Yin X, Fontes JD et al (2010) Association between familial atrial fibrillation and risk of new-onset atrial fibrillation. JAMA 304:2263–2269. https://doi.org/10.1001/jama.2010.1690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Roselli C, Chaffin MD, Weng LC et al (2018) Multi-ethnic genome-wide association study for atrial fibrillation. Nat Genet 50:1225–1233. https://doi.org/10.1038/s41588-018-0133-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Christophersen IE, Rienstra M, Roselli C et al (2017) Large-scale analyses of common and rare variants identify 12 new loci associated with atrial fibrillation. Nat Genet 49:946–952. https://doi.org/10.1038/ng.3843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tucker NR, Ellinor PT (2014) Emerging directions in the genetics of atrial fibrillation. Circ Res 114:1469–1482. https://doi.org/10.1161/CIRCRESAHA.114.302225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gudbjartsson DF, Helgason H, Gudjonsson SA et al (2015) Large-scale whole-genome sequencing of the Icelandic population. Nat Genet 47:435–444. https://doi.org/10.1038/ng.3247

    Article  CAS  PubMed  Google Scholar 

  10. Olesen MS, Andreasen L, Jabbari J et al (2014) Very early-onset lone atrial fibrillation patients have a high prevalence of rare variants in genes previously associated with atrial fibrillation. Heart Rhythm 11:246–251. https://doi.org/10.1016/j.hrthm.2013.10.034

    Article  PubMed  Google Scholar 

  11. Roberts JD, Gollob MH (2010) Impact of genetic discoveries on the classification of lone atrial fibrillation. J Am Coll Cardiol 55:705–712. https://doi.org/10.1016/j.jacc.2009.12.005

    Article  CAS  PubMed  Google Scholar 

  12. Roberts JD, Gollob MH (2014) A contemporary review on the genetic basis of atrial fibrillation. Methodist Debakey Cardiovasc J 10:18–24. https://doi.org/10.14797/mdcj-10-1-18

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mahida S, Lubitz SA, Rienstra M et al (2011) Monogenic atrial fibrillation as pathophysiological paradigms. Cardiovasc Res 89:692–700. https://doi.org/10.1093/cvr/cvq381

    Article  CAS  PubMed  Google Scholar 

  14. Kalstø SM, Siland JE, Rienstra M, Christophersen IE (2019) Atrial fibrillation genetics update: toward clinical implementation. Front Cardiovasc Med 6:1–16. https://doi.org/10.3389/fcvm.2019.00127

    Article  CAS  Google Scholar 

  15. Sinner MF, Tucker NR, Lunetta KL et al (2014) Integrating genetic, transcriptional, and functional analyses to identify 5 novel genes for atrial fibrillation. Circulation 130:1225–1235. https://doi.org/10.1161/CIRCULATIONAHA.114.009892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Aoki T, Okada N, Ishida M et al (1999) TIP120B: a novel TIP120-family protein that is expressed specifically in muscle tissues. Biochem Biophys Res Commun 261:911–916. https://doi.org/10.1006/bbrc.1999.1147

    Article  CAS  PubMed  Google Scholar 

  17. Ahlberg G, Andreasen L, Ghouse J et al (2021) Genome-wide association study identifies 18 novel loci associated with left atrial volume and function. Eur Heart J 42:4523–4534. https://doi.org/10.1093/eurheartj/ehab466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Volonte D, McTiernan CF, Drab M et al (2008) Caveolin-1 and caveolin-3 form heterooligomeric complexes in atrial cardiac myocytes that are required for doxorubicin-induced apoptosis. Am J Physiol 294:392–401. https://doi.org/10.1152/ajpheart.01039.2007

    Article  CAS  Google Scholar 

  19. Oka T, Maillet M, Watt AJ et al (2006) Cardiac-specific deletion of gata4 reveals its requirement for hypertrophy, compensation, and myocyte viability. Circ Res 98:837–845. https://doi.org/10.1161/01.RES.0000215985.18538.c4

    Article  CAS  PubMed  Google Scholar 

  20. Tucker NR, Mahida S, Ye J et al (2017) Gain-of-function mutations in GATA6 lead to atrial fibrillation. Heart Rhythm 14:284–291. https://doi.org/10.1016/j.hrthm.2016.10.014

    Article  PubMed  Google Scholar 

  21. Salameh A, Haunschild J, Bräuchle P et al (2014) On the role of the gap junction protein Cx43 (GJA1) in human cardiac malformations with fallot-pathology. A study on paediatric cardiac specimen. PLoS ONE 9:1–11. https://doi.org/10.1371/journal.pone.0095344

    Article  Google Scholar 

  22. Song K, Nam YJ, Luo X et al (2012) Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature 485:599–604. https://doi.org/10.1038/nature11139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schulze-Bahr E, Neu A, Friederich P et al (2003) Pacemaker channel dysfunction in a patient with sinus node disease. J Clin Invest 111:1537–1545. https://doi.org/10.1172/JCI200316387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Olesen MS, Refsgaard L, Holst AG et al (2013) A novel KCND3 gain-of-function mutation associated with early-onset of persistent lone atrial fibrillation. Cardiovasc Res 98:488–495. https://doi.org/10.1093/cvr/cvt028

    Article  CAS  PubMed  Google Scholar 

  25. Lin J, Lin S, Choy PC et al (2008) The regulation of the cardiac potassium channel (HERG) by caveolin-1. Biochem Cell Biol 86:405–415. https://doi.org/10.1139/O08-118

    Article  CAS  PubMed  Google Scholar 

  26. Ellinor PT, Lunetta KL, Glazer NL et al (2010) Common variants in KCNN3 are associated with lone atrial fibrillation. Nat Genet 42:240–244. https://doi.org/10.1038/ng.537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Orr N, Arnaout R, Gula LJ et al (2016) A mutation in the atrial-specific myosin light chain gene (MYL4) causes familial atrial fibrillation. Nat Commun 7:1–8. https://doi.org/10.1038/ncomms11303

    Article  CAS  Google Scholar 

  28. Latham SL, Weiß N, Schwanke K et al (2020) Myosin-18B regulates higher-order organization of the cardiac sarcomere through thin filament cross-linking and thick filament dynamics. Cell Rep 32:108090. https://doi.org/10.1016/j.celrep.2020.108090

    Article  CAS  PubMed  Google Scholar 

  29. Perrot A, Tomasov P, Villard E et al (2016) Mutations in NEBL encoding the cardiac Z-disk protein nebulette are associated with various cardiomyopathies. Arch Med Sci 12:263–278. https://doi.org/10.5114/aoms.2016.59250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gudbjartsson DF, Arnar DO, Helgadottir A et al (2007) Variants conferring risk of atrial fibrillation on chromosome 4q25. Nature 448:353–357. https://doi.org/10.1038/nature06007

    Article  CAS  PubMed  Google Scholar 

  31. van Ouwerkerk AF, Bosada FM, van Duijvenboden K et al (2019) Identification of atrial fibrillation associated genes and functional non-coding variants. Nat Commun 10:1–14. https://doi.org/10.1038/s41467-019-12721-5

    Article  CAS  Google Scholar 

  32. Kayvanpour E, Sedaghat-Hamedani F, Amr A et al (2017) Genotype-phenotype associations in dilated cardiomyopathy: meta-analysis on more than 8000 individuals. Clin Res Cardiol 106:127–139. https://doi.org/10.1007/s00392-016-1033-6

    Article  CAS  PubMed  Google Scholar 

  33. Asperti C, Astro V, Totaro A et al (2009) Liprin-α1 promotes cell spreading on the extracellular matrix by affecting the distribution of activated integrins. J Cell Sci 122:3225–3232. https://doi.org/10.1242/jcs.054155

    Article  CAS  PubMed  Google Scholar 

  34. Ihida-Stansbury K, McKean DM, Gebb SA et al (2004) Paired-related homeobox gene Prx1 is required for pulmonary vascular development. Circ Res 94:1507–1514. https://doi.org/10.1161/01.RES.0000130656.72424.20

    Article  CAS  PubMed  Google Scholar 

  35. Lieve KV, Verkerk AO, Podliesna S et al (2017) Gain-of-function mutation in SCN5A causes ventricular arrhythmias and early onset atrial fibrillation. Int J Cardiol 236:187–193. https://doi.org/10.1016/j.ijcard.2017.01.113

    Article  PubMed  Google Scholar 

  36. Ellinor PT, Lunetta KL, Albert CM et al (2012) Meta-analysis identifies six new susceptibility loci for atrial fibrillation. Nat Genet 44:670–675. https://doi.org/10.1038/ng.2261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Peng J, Raddatz K, Molkentin JD et al (2007) Cardiac hypertrophy and reduced contractility in hearts deficient in the titin kinase region. Circulation 115:743–751. https://doi.org/10.1161/CIRCULATIONAHA.106.645499

    Article  CAS  PubMed  Google Scholar 

  38. Jiang Q, Ni B, Shi J et al (2014) Down-regulation of ATBF1 activates STAT3 signaling via PIAS3 in pacing-induced HL-1 atrial myocytes. Biochem Biophys Res Commun 449:278–283. https://doi.org/10.1016/j.bbrc.2014.05.041

    Article  CAS  PubMed  Google Scholar 

  39. Lee JY, Kim TH, Yang PS et al (2017) Korean atrial fibrillation network genome-wide association study for early-onset atrial fibrillation identifies novel susceptibility loci. Eur Heart J 38:2586–2594. https://doi.org/10.1093/eurheartj/ehx213

    Article  CAS  PubMed  Google Scholar 

  40. Lubitz SA, Lunetta KL, Lin H et al (2014) Novel genetic markers associate with atrial fibrillation risk in Europeans and Japanese. J Am Coll Cardiol 63:1200–1210. https://doi.org/10.1016/j.jacc.2013.12.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Haïssaguerre M, Jaïs P, Shah DC et al (1998) Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med 339:659–666. https://doi.org/10.1056/NEJM199809033391003

    Article  PubMed  Google Scholar 

  42. Kirchhof P, Kahr PC, Kaese S et al (2011) PITX2c is expressed in the adult left atrium, and reducing Pitx2c expression promotes atrial fibrillation inducibility and complex changes in gene expression. Circ Cardiovasc Genet 4:123–133. https://doi.org/10.1161/CIRCGENETICS.110.958058

    Article  CAS  PubMed  Google Scholar 

  43. Collins MM, Ahlberg G, Hansen CV et al (2019) Early sarcomere and metabolic defects in a zebrafish pitx2c cardiac arrhythmia model. Proc Natl Acad Sci USA 116:24115–24121. https://doi.org/10.1073/pnas.1913905116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ma JF, Yang F, Mahida SN et al (2016) TBX5 mutations contribute to early-onset atrial fibrillation in Chinese and Caucasians. Cardiovasc Res 109:442–450. https://doi.org/10.1093/cvr/cvw003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nadadur RD, Broman MT, Boukens B et al (2016) Pitx2 modulates a Tbx5-dependent gene regulatory network to maintain atrial rhythm. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aaf4891

    Article  PubMed  PubMed Central  Google Scholar 

  46. Low SK, Takahashi A, Ebana Y et al (2017) Identification of six new genetic loci associated with atrial fibrillation in the Japanese population. Nat Genet 49:953–958. https://doi.org/10.1038/ng.3842

    Article  CAS  PubMed  Google Scholar 

  47. Gutierrez A, Chung MK (2016) Genomics of atrial fibrillation. Curr Cardiol Rep. https://doi.org/10.1007/s11886-016-0735-8

    Article  PubMed  PubMed Central  Google Scholar 

  48. Nica AC, Dermitzakis ET (2013) Expression quantitative trait loci: present and future. Philos Trans R Soc B Biol Sci. https://doi.org/10.1098/rstb.2012.0362

    Article  Google Scholar 

  49. Herrmann S, Layh B, Ludwig A (2011) Novel insights into the distribution of cardiac HCN channels: an expression study in the mouse heart. J Mol Cell Cardiol 51:997–1006. https://doi.org/10.1016/j.yjmcc.2011.09.005

    Article  CAS  PubMed  Google Scholar 

  50. Milanesi R, Baruscotti M, Gnecchi-Ruscone T, DiFrancesco D (2006) Familial sinus bradycardia associated with a mutation in the cardiac pacemaker channel. N Engl J Med 354:151–157. https://doi.org/10.1056/nejmoa052475

    Article  CAS  PubMed  Google Scholar 

  51. Beqqali A, Monshouwer-Kloots J, Monteiro R et al (2010) CHAP is a newly identified Z-disc protein essential for heart and skeletal muscle function. J Cell Sci 123:1141–1150. https://doi.org/10.1242/jcs.063859

    Article  PubMed  Google Scholar 

  52. Bang ML, Chen J (2015) Roles of nebulin family members in the heart. Circ J 79:2081–2087. https://doi.org/10.1253/circj.CJ-15-0854

    Article  PubMed  Google Scholar 

  53. Santiago-Medina M, Gregus KA, Nichol RH et al (2015) Regulation of ECM degradation and axon guidance by growth cone invadosomes. Development 142:486–496. https://doi.org/10.1242/dev.108266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nielsen JB, Fritsche LG, Zhou W et al (2018) Genome-wide study of atrial fibrillation identifies seven risk loci and highlights biological pathways and regulatory elements involved in cardiac development. Am J Hum Genet 102:103–115. https://doi.org/10.1016/j.ajhg.2017.12.003

    Article  CAS  PubMed  Google Scholar 

  55. Nielsen JB, Thorolfsdottir RB, Fritsche LG et al (2018) Biobank-driven genomic discovery yields new insight into atrial fibrillation biology. Nat Genet 50:1234–1239. https://doi.org/10.1038/s41588-018-0171-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Norgett EE, Hatsell SJ, Carvajal-Huerta L et al (2000) Recessive mutation in desmoplakin disrupts desmoplakin-intermediate filament interactions and causes dilated cardiomyopathy, woolly hair and keratoderma. Hum Mol Genet 9:2761–2766. https://doi.org/10.1093/hmg/9.18.2761

    Article  CAS  PubMed  Google Scholar 

  57. Norman M, Simpson M, Mogensen J et al (2005) Novel mutation in desmoplakin causes arrhythmogenic left ventricular cardiomyopathy. Circulation 112:636–642. https://doi.org/10.1161/CIRCULATIONAHA.104.532234

    Article  CAS  PubMed  Google Scholar 

  58. Thornton CA (2014) Myotonic dystrophy. Neurol Clin 32:705–719. https://doi.org/10.1016/j.ncl.2014.04.011

    Article  PubMed  PubMed Central  Google Scholar 

  59. Bertelsen L, Diederichsen SZ, Haugan KJ et al (2020) Left atrial volume and function assessed by cardiac magnetic resonance imaging are markers of subclinical atrial fibrillation as detected by continuous monitoring. Europace 22:724–731. https://doi.org/10.1093/europace/euaa035

    Article  PubMed  Google Scholar 

  60. Malfatti E, Böhm J, Lacène E et al (2015) A premature stop codon in MYO18B is associated with severe nemaline myopathy with cardiomyopathy. J Neuromuscul Dis 2:219–227. https://doi.org/10.3233/JND-150085

    Article  PubMed  PubMed Central  Google Scholar 

  61. Husser D, Büttner P, Ueberham L et al (2017) Association of atrial fibrillation susceptibility genes, atrial fibrillation phenotypes and response to catheter ablation: a gene-based analysis of GWAS data. J Transl Med 15:4–9. https://doi.org/10.1186/s12967-017-1170-3

    Article  CAS  Google Scholar 

  62. Clausen AG, Vad OB, Andersen JH, Olesen MS (2021) Loss-of-function variants in the SYNPO2L gene are associated with atrial fibrillation. Front Cardiovasc Med. https://doi.org/10.3389/fcvm.2021.650667

    Article  PubMed  PubMed Central  Google Scholar 

  63. Roselli C, Roselli C, Rienstra M et al (2020) Genetics of atrial fibrillation in 2020: GWAS, genome sequencing, polygenic risk, and beyond. Circ Res. https://doi.org/10.1161/CIRCRESAHA.120.316575

    Article  PubMed  PubMed Central  Google Scholar 

  64. Tada H, Shiffman D, Smith JG et al (2014) Twelve-single nucleotide polymorphism genetic risk score identifies individuals at increased risk for future atrial fibrillation and stroke. Stroke 45:2856–2862. https://doi.org/10.1161/STROKEAHA.114.006072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Khera AV, Chaffin M, Aragam KG et al (2018) Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat Genet 50:1219–1224. https://doi.org/10.1038/s41588-018-0183-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sun YV, Hu YJ (2016) Integrative analysis of multi-omics data for discovery and functional studies of complex human diseases. Elsevier Ltd, Amsterdam

    Book  Google Scholar 

  67. Buenrostro JD, Wu B, Chang HY, Greenleaf WJ (2015) ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr Protoc Mol Biol 2015(2129):1–21299. https://doi.org/10.1002/0471142727.mb2129s109

    Article  Google Scholar 

  68. Arking DE, Pulit SL, Crotti L et al (2014) Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization. Nat Genet 46:826–836. https://doi.org/10.1038/ng.3014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wang B, Lunetta KL, Dupuis J et al (2020) Integrative omics approach to identifying genes associated with atrial fibrillation. Circ Res. https://doi.org/10.1161/CIRCRESAHA.119.315179

    Article  PubMed  PubMed Central  Google Scholar 

  70. Mann SA, Otway R, Guo G et al (2012) Epistatic effects of potassium channel variation on cardiac repolarization and atrial fibrillation risk. J Am Coll Cardiol 59:1017–1025. https://doi.org/10.1016/j.jacc.2011.11.039

    Article  CAS  PubMed  Google Scholar 

  71. Tucker NR, Dolmatova EV, Lin H et al (2017) Diminished PRRX1 expression is associated with increased risk of atrial fibrillation and shortening of the cardiac action potential. Circ Cardiovasc Genet 10:1–12. https://doi.org/10.1161/CIRCGENETICS.117.001902

    Article  CAS  Google Scholar 

  72. Gove C, Walmsley M, Nijjar S et al (1997) Over-expression of GATA-6 in Xenopus embryos blocks differentiation of heart precursors. EMBO J 16:355–368. https://doi.org/10.1093/emboj/16.2.355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Choi SH, Weng LC, Roselli C et al (2018) Association between Titin loss-of-function variants and early-onset atrial fibrillation. JAMA 320:2354–2364. https://doi.org/10.1001/jama.2018.18179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ahlberg G, Refsgaard L, Lundegaard PR et al (2018) Rare truncating variants in the sarcomeric protein titin associate with familial and early-onset atrial fibrillation. Nat Commun 9:1–11. https://doi.org/10.1038/s41467-018-06618-y

    Article  CAS  Google Scholar 

  75. Tsai CT, Hsieh CS, Chang SN et al (2015) Next-generation sequencing of nine atrial fibrillation candidate genes identified novel de novo mutations in patients with extreme trait of atrial fibrillation. J Med Genet 52:28–36. https://doi.org/10.1136/jmedgenet-2014-102618

    Article  CAS  PubMed  Google Scholar 

  76. Zhao J, Yao H, Li Z et al (2016) A novel nonsense mutation in LMNA gene identified by exome sequencing in an atrial fibrillation family. Eur J Med Genet 59:396–400. https://doi.org/10.1016/j.ejmg.2016.06.006

    Article  PubMed  Google Scholar 

  77. Gupta P, Bilinska ZT, Sylvius N et al (2010) Genetic and ultrastructural studies in dilated cardiomyopathy patients: a large deletion in the lamin A/C gene is associated with cardiomyocyte nuclear envelope disruption. Basic Res Cardiol 105:365–377. https://doi.org/10.1007/s00395-010-0085-4

    Article  PubMed  PubMed Central  Google Scholar 

  78. Lubitz SA, Brody JA, Bihlmeyer NA et al (2016) Whole exome sequencing in atrial fibrillation. PLoS Genet 12:1–12. https://doi.org/10.1371/journal.pgen.1006284

    Article  CAS  Google Scholar 

  79. Yoneda ZT, Anderson KC, Quintana JA et al (2021) Early-onset atrial fibrillation and the prevalence of rare variants in cardiomyopathy and arrhythmia genes. JAMA Cardiol 6:1371–1379. https://doi.org/10.1001/jamacardio.2021.3370

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

The work was supported by ICMR Project: No.5/4-5/1-6/2020-NCD-II.

Author information

Authors and Affiliations

Authors

Contributions

AM conceptualized, initiated, performed the literature search, and wrote the original draft. RS and VB supervised, reviewed, and revised the review critically for important intellectual content.

Corresponding author

Correspondence to Ravikumar Sambandam.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Research involving human participants

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manoharan, A., Sambandam, R. & Ballambattu, V.B. Genetics of atrial fibrillation—an update of recent findings. Mol Biol Rep 49, 8121–8129 (2022). https://doi.org/10.1007/s11033-022-07420-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07420-2

Keywords

Navigation