Skip to main content
Log in

Genetic variation at the catalytic subunit of glutamate cysteine ligase contributes to the susceptibility to sporadic colorectal cancer: a pilot study

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Glutathione is a tripeptide detoxifying a variety of exogenous and endogenous free radicals and carcinogens, and a deficiency of glutathione is associated with an increased host susceptibility to oxidative stress, a pathological condition implicated in the development and progression of cancer. The catalytic subunit of glutamate-cysteine ligase (GCLC) is an enzyme responsible for the initial and rate-limiting step of glutathione biosynthesis.

Methods and results

The aim of this pilot study was to investigate whether genetic variation at the GCLC gene contributes to the risk of colorectal cancer (CRC). DNA samples from 681 unrelated Russian individuals (283 patients with CRC and 398 age- and sex-matched healthy controls) were genotyped for six common functional SNPs of the GCLC gene (SNPs) such as rs12524494, rs17883901, rs606548, rs636933, rs648595 and rs761142 of the GCLC gene using the MassARRAY-4 system. We found that genotype rs606548-C/T is significantly associated with increased risk of CRC regardless of sex and age (OR 2.24; 95% CI 1.24–4.03; P = 0.007, FDR = 0.04). Moreover, ten GCLC genotype combinations showed association with the risk of CRC (P < 0.05). Functional SNP annotation enabled establishing the CRC-associated polymorphisms are associated with a decreased GCLC expression that may be attributed to epigenetic effects of histone modifications operating in a colon-specific manner.

Conclusions

The present study was the first to show that genetic variation at the catalytic subunit of glutamate-cysteine ligase may contribute to the risk of colorectal cancer risk. However, further genetic association studies with a larger sample size are required to substantiate the role of GCLC gene polymorphisms in the development of sporadic colorectal cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ferlay J, Soerjomataram I, Dikshit R et al (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136(5):E359–E386. https://doi.org/10.1002/ijc.29210

    Article  CAS  PubMed  Google Scholar 

  2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249. https://doi.org/10.3322/caac.21660

    Article  PubMed  Google Scholar 

  3. Ferlay J, Colombet M, Soerjomataram I, Parkin DM, Piñeros M, Znaor A, Bray F (2020) Cancer statistics for the year 2020: an overview. Int J Cancer. https://doi.org/10.1002/ijc.33588

    Article  PubMed  PubMed Central  Google Scholar 

  4. Keum N, Giovannucci E (2019) Global burden of colorectal cancer: emerging trends, risk factors and prevention strategies. Nat Rev Gastroenterol Hepatol 16(12):713–732. https://doi.org/10.1038/s41575-019-0189-8

    Article  PubMed  Google Scholar 

  5. Aran V, Victorino AP, Thuler LC, Ferreira CG (2016) Colorectal cancer: epidemiology, disease mechanisms and interventions to reduce onset and mortality. Clin Colorectal Cancer 15(3):195–203. https://doi.org/10.1016/j.clcc.2016.02.008

    Article  PubMed  Google Scholar 

  6. Wan ML, Wang Y, Zeng Z, Deng B, Zhu BS, Cao T, Li YK, Xiao J, Han Q, Wu Q (2020) Colorectal cancer (CRC) as a multifactorial disease and its causal correlations with multiple signaling pathways. Biosci Rep 40(3):BSR2020065

    Google Scholar 

  7. Azarova I, Klyosova E, Lazarenko V, Konoplya A, Polonikov A (2020) Genetic variants in glutamate cysteine ligase confer protection against type 2 diabetes. Mol Biol Rep 47(8):5793–5805. https://doi.org/10.1007/s11033-020-05647-5

    Article  CAS  PubMed  Google Scholar 

  8. Fearon ER (2011) Molecular genetics of colorectal cancer. Annu Rev Pathol 6:479–507. https://doi.org/10.1146/annurev-pathol-011110-130235

    Article  CAS  PubMed  Google Scholar 

  9. Siegert S, Hampe J, Schafmayer C, von Schönfels W, Egberts JH, Försti A, Chen B, Lascorz J, Hemminki K, Franke A, Nothnagel M, Nöthlings U, Krawczak M (2013) Genome-wide investigation of gene-environment interactions in colorectal cancer. Hum Genet 132(2):219–231. https://doi.org/10.1007/s00439-012-1239-2

    Article  CAS  PubMed  Google Scholar 

  10. Zeng C, Matsuda K, Jia WH, Chang J, Kweon SS, Xiang YB, Shin A, Jee SH, Kim DH, Zhang B, Cai Q, Guo X, Long J, Wang N, Courtney R, Pan ZZ, Wu C, Takahashi A, Shin MH, Matsuo K, Matsuda F, Gao YT, Oh JH, Kim S, Jung KJ, Ahn YO, Ren Z, Li HL, Wu J, Shi J, Wen W, Yang G, Li B, Ji BT, Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO), Brenner H, Schoen RE, Küry S, Colorectal Transdisciplinary (CORECT) Study, Gruber SB, Schumacher FR, Stenzel SL, Colon Cancer Family Registry (CCFR), Casey G, Hopper JL, Jenkins MA, Kim HR, Jeong JY, Park JW, Tajima K, Cho SH, Kubo M, Shu XO, Lin D, Zeng YX, Zheng W (2016) Identification of Susceptibility Loci and Genes for Colorectal Cancer Risk. Gastroenterology 150(7):1633–1645. https://doi.org/10.1053/j.gastro.2016.02.076

    Article  CAS  PubMed  Google Scholar 

  11. Song M, Garrett WS, Chan AT (2015) Nutrients, foods, and colorectal cancer prevention. Gastroenterology 148(6):1244–60.e16. https://doi.org/10.1053/j.gastro.2014.12.035

    Article  CAS  PubMed  Google Scholar 

  12. Murphy N, Moreno V, Hughes DJ, Vodicka L, Vodicka P, Aglago EK, Gunter MJ, Jenab M (2019) Lifestyle and dietary environmental factors in colorectal cancer susceptibility. Mol Aspects Med 69:2–9. https://doi.org/10.1016/j.mam.2019.06.005

    Article  PubMed  Google Scholar 

  13. Wu G, Fang YZ, Yang S, Lupton JR, Turner ND (2004) Glutathione metabolism and its implications for health. J Nutr 134(3):489–492. https://doi.org/10.1093/jn/134.3.489

    Article  CAS  PubMed  Google Scholar 

  14. Pizzorno J (2014) Glutathione! Integr Med (Encinitas) 13(1):8–12

    Google Scholar 

  15. Richie JP Jr (1992) The role of glutathione in aging and cancer. Exp Gerontol 27(5–6):615–626. https://doi.org/10.1016/0531-5565(92)90015-r

    Article  CAS  PubMed  Google Scholar 

  16. Richie JP Jr, Komninou D, Albino AP (2007) Induction of colon tumorigenesis by glutathione depletion in p53-knock-out mice. Int J Oncol 30(6):1539–1543

    CAS  PubMed  Google Scholar 

  17. Jones DP, Coates RJ, Flagg EW, Eley JW, Block G, Greenberg RS, Gunter EW, Jackson B (1992) Glutathione in foods listed in the National Cancer Institute’s Health Habits and History Food Frequency Questionnaire. Nutr Cancer 17(1):57–75. https://doi.org/10.1080/01635589209514173

    Article  CAS  PubMed  Google Scholar 

  18. Traverso N, Ricciarelli R, Nitti M, Marengo B, Furfaro AL, Pronzato MA, Marinari UM, Domenicotti C (2013) Role of glutathione in cancer progression and chemoresistance. Oxid Med Cell Longev 2013:972913. https://doi.org/10.1155/2013/972913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shiraishi R, Fujise T, Kuroki T, Kakimoto T, Miao L, Sakata Y, Tsunada S, Noda T, Iwakiri R, Fujimoto K (2009) Long-term ingestion of reduced glutathione suppressed an accelerating effect of beef tallow diet on colon carcinogenesis in rats. J Gastroenterol 44(10):1026–1035. https://doi.org/10.1007/s00535-009-0101-3

    Article  CAS  PubMed  Google Scholar 

  20. Hoensch H, Peters WH, Roelofs HM, Kirch W (2006) Expression of the glutathione enzyme system of human colon mucosa by localisation, gender and age. Curr Med Res Opin 22(6):1075–1083. https://doi.org/10.1185/030079906X112480

    Article  CAS  PubMed  Google Scholar 

  21. Kim AD, Zhang R, Han X, Kang KA, Piao MJ, Maeng YH, Chang WY, Hyun JW (2015) Involvement of glutathione and glutathione metabolizing enzymes in human colorectal cancer cell lines and tissues. Mol Med Rep 12(3):4314–4319. https://doi.org/10.3892/mmr.2015.3902

    Article  CAS  PubMed  Google Scholar 

  22. Moskalev AS, Barysheva EM, Soldatov VO, Frolova OG, Bobyntseva OV, Samgina TA, Churnosov MI, Ivanov VP, Polonikov AV, Bushueva OYu (2019) Association of C3435T (rs1045642) polymorphism of the MDR1 gene with the increased risk of colorectal cancer in Russian Females from Central Russia. Russ J Genet 55(12):1514–1519

    Article  CAS  Google Scholar 

  23. Moskalev AS (2020) Association of L432V (rs1056836) polymorphism of the CYP1B1 gene with the increased risk of colorectal cancer in the population of Central Russia. Res Results Biomed 6(3):318–322

    Google Scholar 

  24. Polonikov AV, Klyosova EY, Azarova IE (2021) Bioinformatic tools and internet resources for functional annotation of polymorphic loci detected by genome wide association studies of multifactorial diseases (review). Res Results Biomed 7(1):15–31. https://doi.org/10.18413/2658-6533-2020-7-1-0-2

    Article  Google Scholar 

  25. Solé X, Guinó E, Valls J, Iniesta R, Moreno V (2006) SNPStats: a web tool for the analysis of association studies. Bioinformatics 22(15):1928–1929. https://doi.org/10.1093/bioinformatics/btl268

    Article  CAS  PubMed  Google Scholar 

  26. Hoon DSB, Rahimzadeh N, Bustos MA (2021) EpiMap: fine-tuning integrative epigenomics maps to understand complex human regulatory genomic circuitry. Signal Transduct Target Ther 6(1):179. https://doi.org/10.1038/s41392-021-00620-5

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wang Z, Zang C, Rosenfeld JA, Schones DE, Barski A, Cuddapah S, Cui K, Roh TY, Peng W, Zhang MQ, Zhao K (2008) Combinatorial patterns of histone acetylations and methylations in the human genome. Nat Genet 40(7):897–903. https://doi.org/10.1038/ng.154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen L, Ge B, Casale FP, Vasquez L, Kwan T, Garrido-Martín D, Watt S, Yan Y, Kundu K, Ecker S, Datta A, Richardson D, Burden F, Mead D, Mann AL, Fernandez JM, Rowlston S, Wilder SP, Farrow S, Shao X, Lambourne JJ, Redensek A, Albers CA, Amstislavskiy V, Ashford S, Berentsen K, Bomba L, Bourque G, Bujold D, Busche S, Caron M, Chen SH, Cheung W, Delaneau O, Dermitzakis ET, Elding H, Colgiu I, Bagger FO, Flicek P, Habibi E, Iotchkova V, Janssen-Megens E, Kim B, Lehrach H, Lowy E, Mandoli A, Matarese F, Maurano MT, Morris JA, Pancaldi V, Pourfarzad F, Rehnstrom K, Rendon A, Risch T, Sharifi N, Simon MM, Sultan M, Valencia A, Walter K, Wang SY, Frontini M, Antonarakis SE, Clarke L, Yaspo ML, Beck S, Guigo R, Rico D, Martens JHA, Ouwehand WH, Kuijpers TW, Paul DS, Stunnenberg HG, Stegle O, Downes K, Pastinen T, Soranzo N (2016) Genetic drivers of epigenetic and transcriptional variation in human immune cells. Cell 167(5):1398-1414.e24. https://doi.org/10.1016/j.cell.2016.10.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sies H (1999) Glutathione and its role in cellular functions. Free Radic Biol Med 27(9–10):916–921. https://doi.org/10.1016/s0891-5849(99)00177-x

    Article  CAS  PubMed  Google Scholar 

  30. Lu SC (2009) Regulation of glutathione synthesis. Mol Aspects Med 30(1–2):42–59. https://doi.org/10.1016/j.mam.2008.05.005

    Article  CAS  PubMed  Google Scholar 

  31. Suthanthiran M et al (1990) Glutathione regulates activation-dependent DNA synthesis in highly purified normal human T lymphocytes stimulated via the CD2 and CD3 antigens. Proc Natl Acad Sci 87(9):3343–3347

    Article  CAS  Google Scholar 

  32. Joncourt F, Oberli-Schrämmli AE, Stadler M, Buser K, Franscini L, Fey MF, Cerny T (1995) Patterns of drug resistance parameters in adult leukemia. Leuk Lymphoma 17(1–2):101–109. https://doi.org/10.3109/10428199509051709

    Article  CAS  PubMed  Google Scholar 

  33. Jardim BV, Moschetta MG, Leonel C, Gelaleti GB, Regiani VR, Ferreira LC, Lopes JR, Zuccari DA (2013) Glutathione and glutathione peroxidase expression in breast cancer: an immunohistochemical and molecular study. Oncol Rep 30(3):1119–1128. https://doi.org/10.3892/or.2013.2540

    Article  PubMed  Google Scholar 

  34. Cook JA, Pass HI, Iype SN, Friedman N, DeGraff W, Russo A, Mitchell JB (1991) Cellular glutathione and thiol measurements from surgically resected human lung tumor and normal lung tissue. Cancer Res 51(16):4287–4294

    CAS  PubMed  Google Scholar 

  35. Mougiakakos D, Okita R, Ando T, Dürr C, Gadiot J, Ichikawa J, Zeiser R, Blank C, Johansson CC, Kiessling R (2012) High expression of GCLC is associated with malignant melanoma of low oxidative phenotype and predicts a better prognosis. J Mol Med (Berl) 90(8):935–944. https://doi.org/10.1007/s00109-012-0857-4

    Article  CAS  Google Scholar 

  36. Nguyen LN, Munshi A, Hobbs ML, Story MD, Meyn RD (2001) Paclitaxel restores radiation-induced apoptosis in a bcl-2-expressing, radiation-resistant lymphoma cell line. Int J Radiat Oncol Biol Phys 49(4):1127–1132. https://doi.org/10.1016/s0360-3016(00)01435-8

    Article  CAS  PubMed  Google Scholar 

  37. Bolger JC, McCartan D, Walsh CA, Hao Y, Hughes E, Byrne C, Young LS (2012) Global analysis of breast cancer metastasis suggests cellular reprogramming is central to the endocrine resistant phenotype. In: Cancer research (vol 72). American Association of Cancer Research, Philadelphia

  38. Nguyen A, Loo JM, Mital R, Weinberg EM, Man FY, Zeng Z, Paty PB, Saltz L, Janjigian YY, de Stanchina E, Tavazoie SF (2016) PKLR promotes colorectal cancer liver colonization through induction of glutathione synthesis. J Clin Invest 126(2):681–694. https://doi.org/10.1172/JCI83587

    Article  PubMed  PubMed Central  Google Scholar 

  39. Rodrigues P, Furriol J, Bermejo B, Chaves FJ, Lluch A, Eroles P (2012) Identification of candidate polymorphisms on stress oxidative and DNA damage repair genes related with clinical outcome in breast cancer patients. Int J Mol Sci 13(12):16500–16513. https://doi.org/10.3390/ijms131216500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Koutros S, Andreotti G, Berndt SI, Hughes Barry K, Lubin JH, Hoppin JA, Kamel F, Sandler DP, Burdette LA, Yuenger J, Yeager M, Alavanja MC, Freeman LE (2011) Xenobiotic-metabolizing gene variants, pesticide use, and the risk of prostate cancer. Pharmacogenet Genomics 21(10):615–623. https://doi.org/10.1097/FPC.0b013e3283493a57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Xiong M (2007) Linkage disequilibrium and test for interaction between two loci. Curr Top Hum Genet 5:209. https://doi.org/10.1142/9789812790811_0009

    Article  Google Scholar 

  42. Guerra R (2018) Adverse cutaneous drug eruptions: review of immunology, pathogenesis, and pharmacogenomics with focus on HIV and TEN. Diss. Harvard University

  43. Vieira SM, Monteiro MB, Marques T, Luna AM, Fortes MA, Nery M, Queiroz M, Dib SA, Vendramini MF, Azevedo MJ, Canani LH, Parisi MC, Pavin EJ, Giannella-Neto D, Corrêa-Giannella ML (2011) Association of genetic variants in the promoter region of genes encoding p22phox (CYBA) and glutamate cysteine ligase catalytic subunit (GCLC) and renal disease in patients with type 1 diabetes mellitus. BMC Med Genet 12:129. https://doi.org/10.1186/1471-2350-12-129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Perez RV, Machado CG, Santos-Bezerra DP, Admoni SN, Patente TA, Monteiro MB, Cavaleiro AM, Queiroz MS, Nery M, Corrêa-Giannella ML (2019) Allelic variations in genes belonging to glutathione system increase proliferative retinopathy risk in type 1 diabetes individuals. Gene 703:120–124. https://doi.org/10.1016/j.gene.2019.04.015

    Article  CAS  PubMed  Google Scholar 

  45. Hama K, Fujiwara Y, Hayama T, Ozawa T, Nozawa K, Matsuda K, Hashiguchi Y, Yokoyama K (2021) Very long-chain fatty acids are accumulated in triacylglycerol and nonesterified forms in colorectal cancer tissues. Sci Rep 11(1):6163. https://doi.org/10.1038/s41598-021-85603-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hofmanová J, Slavík J, Ciganek M, Ovesná P, Tylichová Z, Karasová M, Zapletal O, Straková N, Procházková J, Bouchal J, Kolář Z, Ehrmann J, Levková M, Hušková Z, Skalický P, Kozubík A, Machala M, Vondráček J (2021) Complex alterations of fatty acid metabolism and phospholipidome uncovered in isolated colon cancer epithelial cells. Int J Mol Sci 22(13):6650. https://doi.org/10.3390/ijms22136650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bocharova YA (2021) Associations between glutamate cysteine ligase catalytic subunit gene polymorphisms and clinical characteristics of ischemic stroke. Bull Russ State Med Univ 1:19–23

    Article  Google Scholar 

  48. Pekowska A, Benoukraf T, Ferrier P, Spicuglia S (2010) A unique H3K4me2 profile marks tissue-specific gene regulation. Genome Res 20(11):1493–1502. https://doi.org/10.1101/gr.109389.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hussain SP, Hofseth LJ, Harris CC (2003) Radical causes of cancer. Nat Rev Cancer 3(4):276–285. https://doi.org/10.1038/nrc1046

    Article  CAS  PubMed  Google Scholar 

  50. Fedorinov DS, Lyadov VK, Sychev DA (2021) Genotype-based chemotherapy for patients with gastrointestinal tumors: focus on oxaliplatin, irinotecan, and fluoropyrimidines. Drug Metab Pers Ther. https://doi.org/10.1515/dmdi-2021-0162

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the TRC GEN+ Genetic Research Foundation of Trans Russian Co (contract no. 474).

Funding

This study was supported by the TRC GEN + Genetic Research Foundation of Trans Russian Co (Contract No. 474).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina A. Bykanova.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Consent to publish

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bykanova, M.A., Solodilova, M.A., Azarova, I.E. et al. Genetic variation at the catalytic subunit of glutamate cysteine ligase contributes to the susceptibility to sporadic colorectal cancer: a pilot study. Mol Biol Rep 49, 6145–6154 (2022). https://doi.org/10.1007/s11033-022-07406-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07406-0

Keywords

Navigation