Skip to main content

Advertisement

Log in

The complete chloroplast genome sequence of Clerodendranthus spicatus, a medicinal plant for preventing and treating kidney diseases from Lamiaceae family

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Clerodendranthus spicatus (Thunb.) C. Y. Wu ex H. W. Li is one of the most important medicines for the treatment of nephrology in the southeast regions of China. To understand the taxonomic classification of Clerodendranthus species and identify species discrimination markers, we sequenced and characterized its chloroplast genome in the current study.

Methods and results

Total genomic DNA were isolated from dried leaves of C. spicatus and sequenced using an Illumina sequencing platform. The data were assembled and annotated by the NOVOPlasty software and CpGAVAS2 web service. The complete chloroplast genome of C. spicatus was 152,155 bp, including a large single-copy region of 83,098 bp, a small single-copy region of 17,665 bp, and a pair of inverted repeat regions of 25,696 bp. The Isoleucine codons are the most abundant, accounting for 4.17% of all codons. The codons of AUG, UUA, and AGA demonstrated a high degree of usage bias. Twenty-eight simple sequence repeats, thirty-six tandem repeats, and forty interspersed repeats were identified. The distribution of the specific rps19, ycf1, rpl2, trnH, psbA genes were analyzed. Analysis of the genetic distance of the intergenic spacer regions shows that ndhG-ndhI, accD-psaI, rps15-ycf1, rpl20-clpP, ccsA-ndhD regions have high K2p values. Phylogenetic analysis showed that C. spicatu is closely related to two Lamiaceae species, Tectona grandis, and Glechoma longituba.

Conclusions

In this study, we sequenced and characterized the chloroplast genome of C. spicatus. Phylogenomic analysis has identified species closely related to C. spicatus, which represent potential candidates for the development of drugs improving renal functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The cp genome sequence data of C. spicatus that support the findings of this study are openly available in NCBI at GenBank database with accession number MZ063774. (https://www.ncbi.nlm.nih.gov). The associated BioProject, SRA, and Bio-Sample numbers are PRJNA723363, SRR14350365 and SAMN18814878, respectively.

Abbreviations

LSC:

Large single copy

SSC:

Small single copy

IR:

Inverted repeat

SSR:

Simple sequence repeat

ISSR:

Inter-simple sequence repeat

cpSSR:

Chloroplast simple sequence repeat

UPGMA:

Unweighted pair-group method with arithmetic means

DNA:

DeoxyriboNucleic acid

tRNA:

Transfer RNA

rRNA:

Ribosomal RNA

RSCU:

Relative synonymous codon usage

CAI:

Codon adaptation index

TRF:

Tandem repeat finder

MISA:

MicroSatellite identification tool

EMBOSS:

European molecular biology open software suite

K2p:

Kimura 2-parameters

CDS:

Coding sequence

ML:

Maximum likelihood

MEGA:

Molecular evolutionary genetics analysis

OD:

Optical density

PCR:

Polymerase chain reaction

GC:

Guanine and cytosine

IGS:

Inter genic spacer regions

References

  1. Acta Phytotax (1974) Sin. 12:233

  2. Xie ZY (1996) National herbal compendium, 2nd edition, In: Kuang LJ (ed) People’s Medical Publishing House: Beijing, p 572

  3. Jia MR, Li XW (2005) Chinese Ethnic Materia Medica, 1st ed, In: Zhao YX (ed) China Medical Science and Technology Press, Beijing, p 166

  4. Zhao AH, Zhao QS, Li RT, Sun HD (2004) Chemical constituents from Clerodendranthus spicatus. Acta Bot Yunnanica 26(5):563–568

    Google Scholar 

  5. Zheng QX, Sun ZC, Zhang XP, Yuan JQ, Wu HF, Yang JS, Xu XD (2012) Clerodendranoic acid, a new phenolic acid from Clerodendranthus spicatus. Molecules 17(11):13656–13661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang M, Liang JY, Chen XY (2007) Water-soluble constituents of Clerodendranthus spicatus. Chin J Nat Med 5(1):27–30

    CAS  Google Scholar 

  7. Chen YL, Tan CH, Tan JJ, Zhao XM, Jiang SH, Zhu DY (2009) Two new diterpenoid glucosides from Clerodendranthus spicatus. Helv Chim Acta 92:2802–2807. https://doi.org/10.1002/hlca.200900121

    Article  CAS  Google Scholar 

  8. Zhong JY, Wu ZS (1984) Chemical constituents of Clerodendranthus spicatus. Acta Bot Yunnanica 6(3):344–345

    CAS  Google Scholar 

  9. Zou J, Zhu YD, Zhao WM (2008) Two new alkyl glycosides from Clerodendranthus spicatus. J Asian Nat Prod Res 10(7–8):603–607. https://doi.org/10.1080/10286020802133076

    Article  CAS  PubMed  Google Scholar 

  10. Chen Z, Yang CX, Mao XJ (2015) Progress in related pharmacological research on function of Clerodendranthus spicatus. Pharm Informat 4(2):23–30. https://doi.org/10.12677/PI.2015.42003

    Article  CAS  Google Scholar 

  11. Zhang YY, Wu JC, Li SP, Li NL, Huang YF, Lin QH (2021) Research progress on chemical constithents and pharmacological actions of Clerodendruntius spicatus. Acta Chin Med Pharmacol 49(1):112–120

    Google Scholar 

  12. Luo C, Yue XD, Wu FH, Gao X, Wang TX (2015) Genetic diversity in Clerodendranthus spicatus (Thunb.) based on ISSR markers. J Trop Biol 6(2):204–222. https://doi.org/10.15886/j.cnki.rdswxb.2015.02.016

    Article  Google Scholar 

  13. Robles P, Quesada V (2021) Organelle genetics in plants. Int J Mol Sci 22(4):2104. https://doi.org/10.3390/ijms22042104

    Article  PubMed  PubMed Central  Google Scholar 

  14. Schmidt SB, Eisenhut M, Schneider A (2020) Chloroplast transition metal regulation for efficient photosynthesis. Trends Plant Sci 25(8):817–828. https://doi.org/10.1016/j.tplants.2020.03.003

    Article  CAS  PubMed  Google Scholar 

  15. Van Dingenen J, Blomme J, Gonzalez N, Inzé D (2016) Plants grow with a little help from their organelle friends. J Exp Bot 67(22):6267–6281. https://doi.org/10.1093/jxb/erw399

    Article  CAS  PubMed  Google Scholar 

  16. Xiong AS, Peng RH, Zhuang J, Gao F, Zhu B, Fu XY, Xue Y, Jin XF, Tian YS, Zhao W, Yao QH (2009) Gene duplication, transfer, and evolution in the chloroplast genome. Biotechnol Adv 27(4):340–347. https://doi.org/10.1016/j.biotechadv.2009.01.012

    Article  CAS  PubMed  Google Scholar 

  17. Gray MW (1999) Evolution of organellar genomes. Curr Opin Genet Dev 9:678–687. https://doi.org/10.1016/S0959-437X(99)00030-1

    Article  CAS  PubMed  Google Scholar 

  18. Daniell H, Lin C-S, Ming Yu, Chang W-J (2016) Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biol 17(1):134. https://doi.org/10.1186/s13059-016-1004-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nigam D, Garcia-Ruiz H (2020) Variation profile of the orthotospovirus genome. Pathogens 9(7):521. https://doi.org/10.3390/pathogens9070521

    Article  CAS  PubMed Central  Google Scholar 

  20. Vieira L, Do N, Faoro H, Fraga HP, De F, Rogalski M, de Souza EM, de Oliveira Pedrosa FRO, Nodari, Guerra MP (2014) An improved protocol for intact chloroplasts and cpDNA isolation in conifers. PLoS ONE 9(1):e84792. https://doi.org/10.1371/journal.pone.0084792

    Article  CAS  PubMed Central  Google Scholar 

  21. Lei WJ, Ni DP, Wang YJ, Shao JD, Wang XC, Dan Y, Wang JS, Chen HM, Liu C (2016) Intraspecific and heteroplasmic variations, gene losses and inversions in the chloroplast genome of Astragalus membranaceus. Sci Rep 6:21669. https://doi.org/10.1038/srep21669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nock CJ, Waters DLE, Edwards MA, Bowen SG, Rice N, Cordeiro GM, Henry RJ (2011) Chloroplast genome sequences from total DNA for plant identification. Plant Biotechnol J 9(3):328–333. https://doi.org/10.1111/j.1467-7652.2010.00558

    Article  CAS  PubMed  Google Scholar 

  23. Cronn R, Liston A, Parks M, Gernandt D, Shen R, Mockler T (2008) Multiplex sequencing of plant chloroplast genomes using Solexa sequencing-by-synthesis technology. Nucleic Acids Res 36(19):e122. https://doi.org/10.1093/nar/gkn502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120. https://doi.org/10.1093/bioinformatics/btu170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dierckxsens N, Mardulyn P, Smits G (2016) NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucleic Acids Res 45(4):e18. https://doi.org/10.1093/nar/gkw955

    Article  CAS  PubMed Central  Google Scholar 

  26. Shi LC, Chen HM, Jiang M, Wang LQ, Wu X, Huang LF, Liu C (2019) CPGAVAS2, an integrated plastome sequence annotator and analyzer. Nucleic Acids Res 47(W1):65–73. https://doi.org/10.1093/nar/gkz345

    Article  CAS  Google Scholar 

  27. Firtina C, Kim JS, Alser M, Cali DS, Ercument Cicek A, Alkan C, Mutlu O (2020) Apollo: a sequencing-technology-independent, scalable and accurate assembly polishing algorithm. Bioinformatics 36(12):3669–3679. https://doi.org/10.1093/bioinformatics/btaa179

    Article  CAS  PubMed  Google Scholar 

  28. Peden JF (1999) Analysis of codon usage. PhD Thesis, University of Nottingham, UK

  29. Puigbo P, Bravo IG, Garcia-Vallve S (2008) CAIcal: a combined set of tools to assess codon usage adaptation. Biol Direct 3:38. https://doi.org/10.1186/1745-6150-3-38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kurtz S, Jomuna A, Choudhuri V, Ohlebusch E, Schleiermacher C, Stoye J, Giegerich R (2001) REPuter: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res 29(22):4633–4642. https://doi.org/10.1093/nar/29.22.4633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27(2):573–580. https://doi.org/10.1093/nar/27.2.573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Beier S, Thiel T, Münch T, Scholz U, Mascher M (2017) MISA-web: a web server for microsatellite prediction. Bioinformatics 33(16):2583–2585. https://doi.org/10.1093/bioinformatics/btx198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Amiryousefi A, Hyvo Nen J, Poczai P (2018) IRscope: an online program to visualize the junction sites of chloroplast genomes. Bioinformatics 34(17):3030–3031. https://doi.org/10.1093/bioinformatics/bty220

    Article  CAS  PubMed  Google Scholar 

  34. Rice P, Longden I, Bleasby A (2000) EMBOSS:the European molecular biology open software suite. Trends Genet 16(6):276–277. https://doi.org/10.1016/s0168-9525(00)02024-2

    Article  CAS  PubMed  Google Scholar 

  35. Mahadani AK, Awasthi S, Sanyal G, Bhattacharjee P, Pippal S (2021) Indel-K2P: a modified Kimura 2 Parameters (K2P) model to incorporate insertion and deletion (Indel) information in phylogenetic analysis. Cyber-Phys Syst 7(1):1–13. https://doi.org/10.1080/23335777.2021.1879274

    Article  Google Scholar 

  36. Zhang D, Gao F, Jakovlić I, Zou H, Zhang J, Li WX, Wang GT (2020) PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol Ecol Resour 20(1):348–355. https://doi.org/10.1111/1755-0998.13096

    Article  PubMed  Google Scholar 

  37. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30(4):772–780. https://doi.org/10.1093/molbev/mst010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32(1):268–274. https://doi.org/10.1093/molbev/msu300

    Article  CAS  PubMed  Google Scholar 

  39. Hall BG (2013) Building phylogenetic trees from molecular data with MEGA. Mol Biol Evol 30(5):1229–1235. https://doi.org/10.1093/molbev/mst012

    Article  CAS  PubMed  Google Scholar 

  40. Gustafsson C, Govindarajan S, Minshull J (2004) Codon bias and heterologous protein expression. Trends Biotechnol 22(7):346–353. https://doi.org/10.1016/j.tibtech.2004.04.006

    Article  CAS  PubMed  Google Scholar 

  41. Yang HY, Wang LQ, Chen HM, Jiang M, Wu WW, Liu SY, Wang JH, Liu C (2021) Phylogenetic analysis and development of molecular markers for five medicinal Alpinia species based on complete plastome sequences. BMC Plant Biol 21:431. https://doi.org/10.1186/s12870-021-03204-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Qian J, Song JY, Gao HH, Zhu YJ, Xu J, Pang XH, Yao H, Sun C, Li XE, Li CY, Liu JY, Xu HB, Chen SL (2013) The complete chloroplast genome sequence of the medicinal plant Salvia miltiorrhiza. PLoS ONE 8(2):e57607. https://doi.org/10.1371/journal.pone.0057607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Poczai P, Hyvönen J (2010) Nuclear ribosomal spacer regions in plant phylogenetics: problems and prospects. Mol Biol Rep 37(4):1897–1912. https://doi.org/10.1007/s11033-009-9630-3

    Article  CAS  PubMed  Google Scholar 

  44. Liang CL, Wang L, Lei J, Duan BZ, Ma WS, Xiao SM, Qi HJ, Wang Z, Liu YQ, Shen XF, Guo S, Hu HY, Xu J, Chen SL (2019) A Comparative analysis of the chloroplast genomes of four Salvia medicinal plants. Engineering 5:907–915. https://doi.org/10.1016/j.eng.2019.01.017

    Article  CAS  Google Scholar 

  45. Cai XY, Zhang ZJ, Xiong JL, Yang M, Wang ZT (2021) Experimental and molecular docking studies of estrogen-like and anti-osteoporosis activity of compounds in Fructus Psoraleae. J Ethnopharmacol 276(43):114044. https://doi.org/10.1016/j.jep.2021.114044

    Article  PubMed  Google Scholar 

  46. Marsha-LynMcKoy, Grant K, Asemota H, Simon O, Omoruyi F (2015) Renal and hepatic function in hypercholesterolemic rats fed jamaican bitter yam (Dioscorea polygonoides). J Dietary Suppl 12(2):173–183. https://doi.org/10.3109/19390211.2014.952860

    Article  CAS  Google Scholar 

  47. Li T, Hua QJ, Li N, Cui Y, Zhao M (2019) Protective effect of apolysaccharide from Dipsacus asper Wall on strep to zotocin(STZ)-induced diabetic nephropathy in rat. Int J Biol Macromol 133:1194–1200. https://doi.org/10.1016/j.ijbiomac.04.069

    Article  CAS  PubMed  Google Scholar 

  48. Zhang Y, Wang YW, Yang S, Xiao YF, Guan HB, Yue X, Wang XQ, Li XR (2019) The difference of chemical components and biological activities of the raw products slices and the wine steam-processed product from Cistanche deserticola. Evidence-Based Compl Alternat Med (3):1–10. https://doi.org/10.1155/2019/2167947

    Article  Google Scholar 

  49. Ding Y, Huang ZH (2007) Progress in pharmacological effects of emodin, pharmacology and clinical of Chinese medicine. 23(5): 236–238. https://doi.org/10.13412/j.cnki.zyyl.2007.05.119

  50. Zhang QJ, Yang XS, Zhu HY, Hao XJ (2006) Chemical constituents and their pharmacological research progress in medicinal plants of Glechoma Linn. Chin Tradit Herbal Drugs 37(6):950–952. https://doi.org/10.1360/yc-006-1325

    Article  CAS  Google Scholar 

  51. Zhang BB, Nie SQ, Liang JY, Wu FH, Feng F (2014) Researches on the chemical constituents and bioactivity of Salvia spp. Strait Pharmac J 26(11):1–5

    Google Scholar 

  52. Ramachandran S, Rajasekaran A, Kumar KTM (2011) Antidiabetic, antihyperlipidemic and antioxidant potential of methanol extract of Tectona grandis flowers in streptozotocin induced diabetic rats. Asian Pac J Trop Med 4(8):624–631. https://doi.org/10.1016/S1995-7645(11)60160-0

    Article  PubMed  Google Scholar 

  53. He LJ, Jiang JJ, Chen H, Zhang L, Zheng WY, Xu RQ, Huang NL (2020) A review on pharmacological effects and clinical application of Herba Epimedii. Clin J Chin Med 12(2):17–20

    Google Scholar 

  54. Kumar S, Daniell H (2004) Engineering the chloroplast genome for hyperexpression of human therapeutic proteins and vaccine antigens. In: Balbás P, Lorence A (ed) Recombinant Gene Expression. Methods in Molecular Biology. Humana Press. https://doi.org/10.1385/1-59259-774-2:365.

Download references

Acknowledgements

We want to thank Mr. Yang Ni, Jingling Li, Miss Jingwen Yue, and Mr. Junchen Zhou, who have provided support in analyzing the data.

Funding

This work was supported by funds from the National Science &Technology Fundamental Resources Investigation Program of China [2018FY100705], Chinese Academy of Medical Sciences, Innovation Funds for Medical Sciences (CIFMS) [2021–I2M-1-022], National Science Foundation [81872966], Qinghai Provincial Key Laboratory of Phytochemistry of Qinghai Tibet Plateau [2020-ZJ-Y20], the Key Scientific Research Projects of Hunan Education Department [No. 20A467], Hunan technological innovation guidance project [2018SK52001]. The funders were not involved in the study design, data collection, and analysis, decision to publish, or manuscript preparation.

Author information

Authors and Affiliations

Authors

Contributions

CL conceived the study; MJ and LQW collected C. spicatus samples, extracted DNA for next-generation sequencing; DQ, SSH, SYL assembled, validated the assembled genome, performed data analysis, and drafted the manuscript; LQW, HMC, CBJ, HDG, BW and YL reviewed the manuscript critically. All authors have read and agreed on the contents of the manuscript.

Corresponding authors

Correspondence to Bin Wang or Chang Liu.

Ethics declarations

Conflict of interest

All the authors declare no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.The online version contains supplementary material available at https://doi.org/10.1007/s11033-022-07135-4 .

Supplementary file1 (DOCX 496 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Q., Jiang, M., Sun, S. et al. The complete chloroplast genome sequence of Clerodendranthus spicatus, a medicinal plant for preventing and treating kidney diseases from Lamiaceae family. Mol Biol Rep 49, 3073–3083 (2022). https://doi.org/10.1007/s11033-022-07135-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07135-4

Keywords

Navigation