Skip to main content

Advertisement

Log in

The effects of exercise on kidney injury: the role of SIRT1

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

In patients with kidney injury, muscle mass and strength decrease with altered muscle protein synthesis and degradation along with complications such as inflammation and low physical activity. A treatment strategy to maintain muscle metabolism in kidney injury is important. One of the proposed strategies in this regard is exercise, which in addition to inducing muscle hypertrophy, reducing plasma creatinine and urea and decreasing the severity of tubal injuries, can boost immune function and has anti-inflammatory effects. One of the molecules that have been considered as a target in the treatment of many diseases is silent information regulator 1 (SIRT1). Exercise increases the expression of SIRT1 and improves its activity. Therefore, studies that examined the effect of exercise on kidney injury considering the role of SIRT1 in this effect were reviewed to determine the direction of kidney injury research in future regarding to its prevalence, especially following diabetes, and lack of definitive treatment. In this review, we found that SIRT1 can be one of renoprotective target pathways of exercise. However, further studies are needed to determine the role of SIRT1 in different kidney injuries following exercise according to the type and severity of exercise, and the type of kidney injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of data and materials

Not applicable.

Abbreviations

AKI:

Acute kidney injury

AKT:

Protein kinase B

AMPK:

AMP-activated protein kinase

AQP2:

Aquaporin 2

ATP:

Adenosine triphosphate

AT1R:

Angiotensin II receptor type 1

Bcl-2:

B-cell lymphoma 2

Bax:

Bcl-2-associated X protein

CKD:

Chronic kidney disease

CR:

Calorie restriction

DN:

Diabetic nephropathy

ENaC:

Epithelial sodium channel

ERK1/2:

Extracellular signal-regulated kinases1/2

ESKD:

End-stage kidney disease

Fas:

Apo 1/CD 95/tumor necrosis factor superfamily 6

FoxO1:

Forkhead box protein O1

GFR:

Glomerular filtration rate

GPx:

Glutathione peroxidase

HIF-1α:

Hypoxia-inducible factor 1-α

IL-1:

Interleukin-1

IL-6:

Interleukin-6

IL-10:

Interleukin-10

IL-18:

Interleukin-18

iNos:

Inducible nitric oxide syntheses

JNK:

C-Jun N-terminal kinases

KIM-1:

Kidney injury molecule-1

MAPK:

Mitogen-activated protein kinase

MDA:

Malondialdehyde

MLKL:

Mixed lineage kinase domain-like protein

MMP-14:

Matrix metaloproteinase-14

mTOR:

Mammalian target of rapamycin

NAD + :

Nicotinamide adenine dinucleotide

NADPH oxidase:

Nicotinamide adenine dinucleotide phosphate oxidase

NF-κB:

Nuclear factor κB

P38:

Tumor protein with a molecular weight of 38 kDa

P53:

Tumor protein with a molecular weight of 53 kDa

PGC1α:

Peroxisome proliferator-activated receptor gamma co-activator 1-α

PI3K:

Phosphoinositide 3-kinases

RIPK:

Receptor-interacting protein kinase

PPAR:

Peroxisome proliferator-activated receptor

RONS:

Reactive oxygen and nitrogen species

ROS:

Reactive oxygen species

SIRT1:

Silent information regulator1

SOD:

Superoxide dismutase

STAT3:

Signal transducer and activator of transcription 3

TGF-β:

Transforming growth factor- β

TLR:

Toll-like receptor

TNF-α:

Tumor necrosis factor-α

References

  1. Verzola D, Picciotto D, Saio M, Aimasso F, Bruzzone F, Sukkar SG et al (2021) Low protein diets and plant-based low protein diets: do they meet protein requirements of patients with chronic kidney disease? Nutrients 13(1):83

    Article  CAS  Google Scholar 

  2. Roshanravan B, Patel KV, Robinson-Cohen C, de Boer IH, O’Hare AM, Ferrucci L et al (2015) Creatinine clearance, walking speed, and muscle atrophy: a cohort study. Am J Kidney Dis 65(5):737–747

    Article  CAS  PubMed  Google Scholar 

  3. Yoshida T, Kakizawa S, Totsuka Y, Sugimoto M, Miura S, Kumagai H (2017) Effect of endurance training and branched-chain amino acids on the signaling for muscle protein synthesis in CKD model rats fed a low-protein diet. Am J Physiol Renal Physiol 313(3):F805–F814

    Article  CAS  PubMed  Google Scholar 

  4. Codella R, Della Guardia L, Terruzzi I, Solini A, Folli F, Varoni EM et al (2021) Physical activity as a proxy to ameliorate inflammation in patients with type 2 diabetes and periodontal disease at high cardiovascular risk. Nutr Metab Cardiovasc Dis. https://doi.org/10.1016/j.numecd.2021.04.022

    Article  PubMed  Google Scholar 

  5. Shibata K, Takizawa K, Nosaka K, Mizuno M (2021) Effects of prolonging eccentric phase duration in parallel back-squat training to momentary failure on muscle cross-sectional area, squat one repetition maximum, and performance tests in university soccer players. J Strength Cond Res 35(3):668–674

    Article  PubMed  Google Scholar 

  6. Wilkinson TJ, Shur NF, Smith AC (2016) “Exercise as medicine” in chronic kidney disease. Scand J Med Sci Sports 26(8):985–988

    Article  CAS  PubMed  Google Scholar 

  7. Viana JL, Kosmadakis GC, Watson EL, Bevington A, Feehally J, Bishop NC et al (2014) Evidence for anti-inflammatory effects of exercise in CKD. J Am Soc Nephrol 25(9):2121–2130

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hasegawa K, Wakino S, Yoshioka K, Tatematsu S, Hara Y, Minakuchi H et al (2010) Kidney-specific overexpression of Sirt1 protects against acute kidney injury by retaining peroxisome function. J Biol Chem 285(17):13045–13056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhong Y, Lee K, He JC (2018) SIRT1 is a potential drug target for treatment of diabetic kidney disease. Front Endocrinol 9:624

    Article  Google Scholar 

  10. Liu H-W, Kao H-H, Wu C-H (2019) Exercise training upregulates SIRT1 to attenuate inflammation and metabolic dysfunction in kidney and liver of diabetic db/db mice. Nutr Metab 16(1):1–10

    Article  Google Scholar 

  11. Kellum JA, Romagnani P, Ashuntantang G, Ronco C, Zarbock A, Anders H-J (2021) Acute kidney injury. Nat Rev Dis Primers 7(1):1–17

    Article  Google Scholar 

  12. Hessey E (2016) Evaluating long-term renal outcomes after acute kidney injury in critically ill children using two approaches: administrative data and patient-oriented research. McGill University, Montreal

    Google Scholar 

  13. Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P (2004) Acute renal failure–definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care 8(4):1–9

    Article  Google Scholar 

  14. Mishra M, Ng S, Hanison J (2021) Renal failure and its treatment. Anaesth Intens Care Med 2(7):398–405

    Article  Google Scholar 

  15. Kaufman J, Dhakal M, Patel B, Hamburger R (1991) Community-acquired acute renal failure. Am J Kidney Dis 17(2):191–198

    Article  CAS  PubMed  Google Scholar 

  16. Docherty NG, Delles C, D’Haese P, Layton AT, Martínez-Salgado C, Vervaet BA et al (2021) Haemodynamic Frailty-A Risk Factor for Acute Kidney Injury in the Elderly. Ageing Res Rev 70:101408

    Article  PubMed  Google Scholar 

  17. Abebe A, Kumela K, Belay M, Kebede B, Wobie Y (2021) Mortality and predictors of acute kidney injury in adults: a hospital-based prospective observational study. Sci Rep 11(1):1–8

    Article  CAS  Google Scholar 

  18. Diwan V, Brown L, Gobe GCJ (2018) Adenine-induced chronic kidney disease in rats. Nephrology 23(1):5–11

    Article  CAS  PubMed  Google Scholar 

  19. Zuñiga-San Martin C (2021) Chronic kidney disease continuous care (supportive and conservative treatment). Frailty and kidney disease: Springer, New Yprk, pp 183–196

  20. Warady BA, Chadha V (2007) Chronic kidney disease in children: the global perspective. Pediatr Nephrol 22(12):1999–2009

    Article  PubMed  PubMed Central  Google Scholar 

  21. Coresh J, Byrd-Holt D, Astor BC, Briggs JP, Eggers PW, Lacher DA et al (2005) Chronic kidney disease awareness, prevalence, and trends among US adults, 1999 to 2000. J Am Soc Nephrol 16(1):180–188

    Article  PubMed  Google Scholar 

  22. Samsu N (2021) Diabetic nephropathy: challenges in pathogenesis, diagnosis, and treatment. BioMed Res Int. https://doi.org/10.1155/2021/1497449

    Article  PubMed  PubMed Central  Google Scholar 

  23. Vaghefi SSE, Mousavi F, Khaksari M, Asadikaram G, Soltani Z (2021) Sex-related changes in circadian rhythm of inflammatory and oxidative stress markers in CKD. Iran J Kidney Dis 15(5):351–363

    Google Scholar 

  24. Saran AM, DuBose TD Jr (2008) Cardiovascular disease in chronic kidney disease. Ther Adv Cardiovasc Dis 2(6):425–434

    Article  PubMed  Google Scholar 

  25. Hu MC, Shi M, Gillings N, Flores B, Takahashi M, Kuro-o M et al (2017) Recombinant α-Klotho may be prophylactic and therapeutic for acute to chronic kidney disease progression and uremic cardiomyopathy. Kidney Int 91(5):1104–1114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Descamps-Latscha B, Jungers P, Witko-Sarsat V (2002) Immune system dysregulation in uremia: role of oxidative stress. Blood Purif 20(5):481–484

    Article  CAS  PubMed  Google Scholar 

  27. Galvan DL, Green NH, Danesh FR (2017) The hallmarks of mitochondrial dysfunction in chronic kidney disease. Kidney Int 92(5):1051–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lv W, Booz GW, Fan F, Wang Y, Roman RJ (2018) Oxidative stress and renal fibrosis: recent insights for the development of novel therapeutic strategies. Front Physiol 9:105

    Article  PubMed  PubMed Central  Google Scholar 

  29. Basile D (2007) The endothelial cell in ischemic acute kidney injury: implications for acute and chronic function. Kidney Int 72(2):151–156

    Article  CAS  PubMed  Google Scholar 

  30. Sato Y, Yanagita M (2018) Immune cells and inflammation in AKI to CKD progression. Am J Physiol Renal Physiol 315(6):F1501–F1512

    Article  CAS  PubMed  Google Scholar 

  31. Gomez IG, Duffield JS (2014) The FOXD1 lineage of kidney perivascular cells and myofibroblasts: functions and responses to injury. Kidney Int Suppl 4(1):26–33

    Article  CAS  Google Scholar 

  32. Kang H-Y, Lin H-K, Hu Y-C, Yeh S, Huang K-E, Chang C (2001) From transforming growth factor-β signaling to androgen action: identification of Smad3 as an androgen receptor coregulator in prostate cancer cells. Proc Natl Acad Sci USA 98(6):3018–3023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sabet N, Soltani Z, Khaksari M (2021) Multipotential and systemic effects of traumatic brain injury. J Neuroimmunol 357:577619

    Article  CAS  PubMed  Google Scholar 

  34. Yeda X, Shaoqing L, Yayi H, Bo Z, Huaxin W, Hong C et al (2017) Dexmedetomidine protects against renal ischemia and reperfusion injury by inhibiting the P38-MAPK/TXNIP signaling activation in streptozotocin induced diabetic rats 1. Acta Cir Bras 32:429–439

    Article  PubMed  Google Scholar 

  35. Huynh P, Chai Z (2019) Transforming growth factor β (TGFβ) and related molecules in chronic kidney disease (CKD). Clin Sci 133(2):287–313

    Article  CAS  Google Scholar 

  36. Andrikopoulos P, Kieswich J, Pacheco S, Nadarajah L, Harwood SM, O’Riordan CE et al (2019) The MEK inhibitor trametinib ameliorates kidney fibrosis by suppressing ERK1/2 and mTORC1 signaling. J Am Soc Nephrol 30(1):33–49

    Article  CAS  PubMed  Google Scholar 

  37. Wolfs TG, De Vries B, Walter SJ, Peutz-Kootstra CJ, Van Heurn LE, Oosterhof GO et al (2005) Apoptotic cell death is initiated during normothermic ischemia in human kidneys. Am J Transplant 5(1):68–75

    Article  PubMed  Google Scholar 

  38. Shen S, Zhou J, Meng S, Wu J, Ma J, Zhu C et al (2017) The protective effects of ischemic preconditioning on rats with renal ischemia-reperfusion injury and the effects on the expression of Bcl-2 and Bax. Exp Ther Med 14(5):4077–4082

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Wei Q, Dong G, Chen J-K, Ramesh G, Dong Z (2013) Bax and Bak have critical roles in ischemic acute kidney injury in global and proximal tubule–specific knockout mouse models. Kidney Int 84(1):138–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pefanis A, Ierino FL, Murphy JM, Cowan PJ (2019) Regulated necrosis in kidney ischemia-reperfusion injury. Kidney Int 96(2):291–301

    Article  PubMed  Google Scholar 

  41. Linkermann A, Bräsen JH, Darding M, Jin MK, Sanz AB, Heller J-O et al (2013) Two independent pathways of regulated necrosis mediate ischemia–reperfusion injury. Proc Natl Acad Sci USA 110(29):12024–12029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Caspersen CJ, Powell KE, Christenson GM (1985) Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Rep 100(2):126

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Voet NB, van der Kooi EL, van Engelen BG, Geurts AC (2019) Strength training and aerobic exercise training for muscle disease. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD003907.pub5

    Article  PubMed  PubMed Central  Google Scholar 

  44. Moghetti P, Bacchi E, Brangani C, Donà S, Negri C (2016) Metabolic effects of exercise. Sports Endocrinol 47:44–57

    Article  CAS  Google Scholar 

  45. Hendrickse PW, Venckunas T, Platkevicius J, Kairaitis R, Kamandulis S, Snieckus A et al (2021) Endurance training-induced increase in muscle oxidative capacity without loss of muscle mass in younger and older resistance-trained men. Eur J Appl Physiol 121(11):3161–3172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Stetic L, Belcic I, Sporis G, Stetic L, Starcevic N (2021) Influence of physical activity on the regulation of disease of elderly persons with metabolic syndrome. Int J Environ Res Public Health 18(1):275

    Article  CAS  PubMed Central  Google Scholar 

  47. Bassuk SS, Manson JE (2005) Epidemiological evidence for the role of physical activity in reducing risk of type 2 diabetes and cardiovascular disease. J Appl Physiol. https://doi.org/10.1152/japplphysiol.00160.2005

    Article  PubMed  Google Scholar 

  48. Sadeghinejad M, Soltani Z, Afzalpour ME, Khaksari M, Pourranjbar M (2019) What is the combined effect of intense intermittent exercise and Ginkgo biloba plant on the brain neurotrophic factors levels, and learning and memory in young rats? Pharmacol Rep 71(3):503–508

    Article  CAS  PubMed  Google Scholar 

  49. Soltani N, Soltani Z, Khaksari M, Ebrahimi G, Hajmohammmadi M, Iranpour M (2019) The changes of brain edema and neurological outcome, and the probable mechanisms in diffuse traumatic brain injury induced in rats with the history of exercise. Cell Mol Neurobiol 40(4):555–567

    Article  PubMed  Google Scholar 

  50. Cleasby ME, Reinten TA, Cooney GJ, James DE, Kraegen EW (2007) Functional studies of Akt isoform specificity in skeletal muscle in vivo; maintained insulin sensitivity despite reduced insulin receptor substrate-1 expression. Mol Endocrinol 21(1):215–228

    Article  CAS  PubMed  Google Scholar 

  51. Tam BT, Siu PM (2014) Autophagic cellular responses to physical exercise in skeletal muscle. Sports Med 44(5):625–640

    Article  PubMed  Google Scholar 

  52. Kaushal GP, Shah SV (2016) Autophagy in acute kidney injury. Kidney Int 89(4):779–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kiran TR, Subramanyam M, Devi SA (2004) Swim exercise training and adaptations in the antioxidant defense system of myocardium of old rats: relationship to swim intensity and duration. Comput Biochem Physiol B 137(2):187–196

    Article  CAS  Google Scholar 

  54. Gunduz F, Senturk U, Kuru O, Aktekin B, Aktekin M (2004) The effect of one year swimming exercise on oxidant stress and antioxidant capacity in aged rats. Physiol Res 53(2):171–176

    CAS  PubMed  Google Scholar 

  55. Edinburgh RM, Koumanov F, Gonzalez JT (2021) Impact of pre-exercise feeding status on metabolic adaptations to endurance-type exercise training. J Physiol. https://doi.org/10.1113/JP280748

    Article  PubMed  Google Scholar 

  56. Carling D, Viollet BJ (2015) Beyond energy homeostasis: the expanding role of AMP-activated protein kinase in regulating metabolism. Cell Metab 21(6):799–804

    Article  CAS  PubMed  Google Scholar 

  57. Morales-Alamo D, Calbet JA (2016) AMPK signaling in skeletal muscle during exercise: role of reactive oxygen and nitrogen species. Free Radic Biol Med 98:68–77

    Article  CAS  PubMed  Google Scholar 

  58. Bouzid MA, Hammouda O, Matran R, Robin S, Fabre C (2014) Low intensity aerobic exercise and oxidative stress markers in older adults. J Aging Phys Act 22(4):536–542

    Article  PubMed  Google Scholar 

  59. Boveris A, Navarro A (2008) Brain mitochondrial dysfunction in aging. IUBMB Life 60(5):308–314

    Article  CAS  PubMed  Google Scholar 

  60. Fischer CP (2006) Interleukin-6 in acute exercise and training: what is the biological relevance. Exerc immunol rev 12(6–33):41

    Google Scholar 

  61. Toft AD, Falahati A, Steensberg A (2011) Source and kinetics of interleukin-6 in humans during exercise demonstrated by a minimally invasive model. Eur J Appl Physiol 111(7):1351–1359

    Article  CAS  PubMed  Google Scholar 

  62. Pedersen BK, Febbraio MA (2008) Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev 88(4):1379–1406

    Article  CAS  PubMed  Google Scholar 

  63. Cabral-Santos C, de Lima Junior EA, Fernandes IMDC, Pinto RZ, Rosa-Neto JC, Bishop NC et al (2019) Interleukin-10 responses from acute exercise in healthy subjects: a systematic review. J Cell Physiol 234(7):9956–65

    Article  CAS  PubMed  Google Scholar 

  64. Luan X, Tian X, Zhang H, Huang R, Li N, Chen P et al (2019) Exercise as a prescription for patients with various diseases. J Sport Health Sci 8(5):422–441

    Article  PubMed  PubMed Central  Google Scholar 

  65. Hardie DG, Sakamoto K (2006) AMPK: a key sensor of fuel and energy status in skeletal muscle. Physiology 21(1):48–60

    Article  CAS  PubMed  Google Scholar 

  66. Spiegelman BM (2007) Transcriptional control of energy homeostasis through the PGC1 coactivators. Novartis Foundation symposium. Wiley Online Library

  67. Pin-Barre C, Laurin J (2015) Physical exercise as a diagnostic, rehabilitation, and preventive tool: influence on neuroplasticity and motor recovery after stroke. Neural Plast. https://doi.org/10.1155/2015/608581

    Article  PubMed  PubMed Central  Google Scholar 

  68. Powers SK, Lennon SL (1999) Analysis of cellular responses to free radicals: focus on exercise and skeletal muscle. Proc Nutr Soc 58(4):1025–1033

    Article  CAS  PubMed  Google Scholar 

  69. de Lima WV, Visona I, Schor N, Almeida WS (2019) Preconditioning by aerobic exercise reduces acute ischemic renal injury in rats. Physiol Rep 7(14):e14176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Betin VM, Lane JD (2009) Caspase cleavage of Atg4D stimulates GABARAP-L1 processing and triggers mitochondrial targeting and apoptosis. J Cell Sci 122(14):2554–2566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Escobar KA, Cole NH, Mermier CM, VanDusseldorp TA (2019) Autophagy and aging: Maintaining the proteome through exercise and caloric restriction. Aging Cell 18(1):e12876

    Article  CAS  PubMed  Google Scholar 

  72. Poortmans JR, Vanderstraeten J (1994) Kidney function during exercise in healthy and diseased humans. Sports Med 18(6):419–437

    Article  CAS  PubMed  Google Scholar 

  73. Jhamb M, McNulty ML, Ingalsbe G, Childers JW, Schell J, Conroy MB et al (2016) Knowledge, barriers and facilitators of exercise in dialysis patients: a qualitative study of patients, staff and nephrologists. BMC Nephrol 17(1):1–14

    Article  Google Scholar 

  74. Roshanravan B, Gamboa J, Wilund K (2017) Exercise and CKD: skeletal muscle dysfunction and practical application of exercise to prevent and treat physical impairments in CKD. Am J Kidney Dis 69(6):837–852

    Article  PubMed  PubMed Central  Google Scholar 

  75. Oliveira C, Rodrigues A, Nogueira G, Nascimento M, Punaro G, Higa E (2017) Moderate aerobic exercise on the recovery phase of gentamicin-induced acute kidney injury in rats. Life Sci 169:37–42

    Article  CAS  PubMed  Google Scholar 

  76. Amaral LSDB, Silva FA, Correia VB, Andrade CE, Dutra BA, Oliveira MV et al (2016) Beneficial effects of previous exercise training on renal changes in streptozotocin-induced diabetic female rats. Exp Biol Med 241(4):437–45

    Article  CAS  Google Scholar 

  77. Kohzuki M, Kamimoto M, Wu X-M, Xu H-L, Kawamura T, Mori N et al (2001) Renal protective effects of chronic exercise and antihypertensive therapy in hypertensive rats with chronic renal failure. J Hypertens 19(10):1877–1882

    Article  CAS  PubMed  Google Scholar 

  78. Tucker PS, Scanlan AT, Dalbo VJ (2015) High intensity interval training favourably affects angiotensinogen mRNA expression and markers of cardiorenal health in a rat model of early-stage chronic kidney disease. BioMed Res Int. https://doi.org/10.1155/2015/156584

    Article  PubMed  PubMed Central  Google Scholar 

  79. Elsaid FH, Khalil AA, Ibrahim EM, Mansour A, Hussein AM (2019) Effects of exercise and stevia on renal ischemia/reperfusion injury in rats. Acta Sci Pol Technol Aliment 18(3):317–332

    CAS  PubMed  Google Scholar 

  80. Peng C-C, Chen K-C, Hsieh C-L, Peng RY (2012) Swimming exercise prevents fibrogenesis in chronic kidney disease by inhibiting the myofibroblast transdifferentiation. PLoS ONE 7(6):e37388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Francescato HD, Almeida LF, Reis NG, Faleiros CM, Papoti M, Costa RS et al (2018) Previous exercise effects in cisplatin-induced renal lesions in rats. Kidney Blood Press Res 43(2):582–593

    Article  CAS  PubMed  Google Scholar 

  82. Ishikawa Y, Gohda T, Tanimoto M, Omote K, Furukawa M, Yamaguchi S et al (2012) Effect of exercise on kidney function, oxidative stress, and inflammation in type 2 diabetic KK-Ay mice. Exp Diabetes Res. https://doi.org/10.1155/2012/702948

    Article  PubMed  PubMed Central  Google Scholar 

  83. Martínez R, Kapravelou G, López-Chaves C, Cáceres E, Coll-Risco I, Sánchez-González C et al (2019) Aerobic interval exercise improves renal functionality and affects mineral metabolism in obese Zucker rats. Am J Physiol Renal Physiol 316(1):F90–F100

    Article  CAS  PubMed  Google Scholar 

  84. Almeida JA, Motta-Santos D, Petriz BA, Gomes CPDC, Nogueira ME, Pereira RW et al (2020) High-intensity aerobic training lowers blood pressure and modulates the renal renin-angiotensin system in spontaneously hypertensive rats. Clin Exp Hypertens 42(3):233–238

    Article  CAS  PubMed  Google Scholar 

  85. Noroozi J, Zeynali F, Nematbakhsh M, Pezeshki Z, Talebi A (2015) Nonpreventive role of aerobic exercise against cisplatin-induced nephrotoxicity in female rats. Int J Prev Med 6:58

    Article  PubMed  PubMed Central  Google Scholar 

  86. Moningka NC, Sindler AL, Muller-Delp JM, Baylis C (2011) Twelve weeks of treadmill exercise does not alter age-dependent chronic kidney disease in the Fisher 344 male rat. J Physiol 589(24):6129–6138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Aparicio V, Tassi M, Nebot E, Camiletti-Moiron D, Ortega E, Porres J et al (2014) High-intensity exercise may compromise renal morphology in rats. Int J Sports Med 35(08):639–644

    Article  CAS  PubMed  Google Scholar 

  88. Santana DA, Poortmans JR, Dórea EL, Machado JBDA, Fernandes AL, Sá-Pinto AL et al (2017) Acute exercise does not impair renal function in nondialysis chronic kidney disease patients regardless of disease stage. Am J Physiol Renal Physiol 313(2):547–52

    Article  CAS  Google Scholar 

  89. Húngaro TGR, Freitas-Lima LC, Gregnani MF, Perilhão MS, Alves-Silva T, Arruda AC et al (2020) Physical exercise exacerbates acute kidney injury induced by LPS via toll-like receptor 4. Front Physiol 11:768

    Article  PubMed  PubMed Central  Google Scholar 

  90. Wu G, Chen Y, Huang X, Zhang L (2012) Exhaustive swimming exercise related kidney injury in rats—protective effects of acetylbritannilactone. Int J Sports Med 33(01):1–7

    Article  CAS  PubMed  Google Scholar 

  91. Gordon L, McGrowder DA, Pena YT, Cabrera E, Lawrence-Wright M (2012) Effect of exercise therapy on lipid parameters in patients with end-stage renal disease on hemodialysis. J Lab Phys 4(1):17

    CAS  Google Scholar 

  92. Miyagi MYS, Seelaender M, Castoldi A, de Almeida DC, Bacurau AVN, Andrade-Oliveira V et al (2014) Long-term aerobic exercise protects against cisplatin-induced nephrotoxicity by modulating the expression of IL-6 and HO-1. PLoS ONE 9(10):e108543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Moraes C, Marinho SM, Da Nobrega AC, de Oliveira BB, Jacobson LV, Stockler-Pinto MB et al (2014) Resistance exercise: a strategy to attenuate inflammation and protein-energy wasting in hemodialysis patients? Int Urol Nephrol 46(8):1655–1662

    Article  CAS  PubMed  Google Scholar 

  94. Tucker PS, Briskey DR, Scanlan AT, Coombes JS, Dalbo VJ (2015) High intensity interval training favourably affects antioxidant and inflammation mRNA expression in early-stage chronic kidney disease. Free Radic Biol Med 89:466–472

    Article  CAS  PubMed  Google Scholar 

  95. Ito D, Cao P, Kakihana T, Sato E, Suda C, Muroya Y et al (2015) Chronic running exercise alleviates early progression of nephropathy with upregulation of nitric oxide synthases and suppression of glycation in zucker diabetic rats. PLoS ONE 10(9):e0138037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kumral Z, Sener G, Ozgur S, Koc M, Suleymanoglu S, Hurdag C et al (2016) Regular exercise alleviates renovascular hypertension-induced cardiac/endothelial dysfunction and oxidative injury in rats. J Physiol Pharmacol 67(1):45–55

    CAS  PubMed  Google Scholar 

  97. Tang L-X, Wang B, Wu Z-K (2018) Aerobic exercise training alleviates renal injury by interfering with mitochondrial function in type-1 diabetic mice. Med Sci Monitor 24:9081

    Article  CAS  Google Scholar 

  98. Huang C-C, Lin Y-Y, Yang A-L, Kuo T-W, Kuo C-H, Lee S-D (2018) Anti-renal fibrotic effect of exercise training in hypertension. Int J Mol Sci 19(2):613

    Article  CAS  PubMed Central  Google Scholar 

  99. Souza MK, Neves RVP, Rosa TS, Cenedeze MA, Arias SCA, Fujihara CK et al (2018) Resistance training attenuates inflammation and the progression of renal fibrosis in chronic renal disease. Life Sci 206:93–97

    Article  CAS  PubMed  Google Scholar 

  100. Kosaki K, Sugaya T, Ohata K, Tanabe J, Hoshino S, Inoue K et al (2019) Renoprotective effects of voluntary running exercise training on aldosterone-induced renal injury in human L-FABP chromosomal transgenic mice. Hypertens Res 42(10):1518–1527

    Article  CAS  PubMed  Google Scholar 

  101. Nagata S, Kato A, Isobe S, Fujikura T, Ohashi N, Miyajima H et al (2020) Regular exercise and branched-chain amino acids prevent ischemic acute kidney injury-related muscle wasting in mice. Physiol Rep 8(16):e14557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Watson EL, Baker LA, Wilkinson TJ, Gould DW, Graham-Brown MP, Major RW et al (2020) Reductions in skeletal muscle mitochondrial mass are not restored following exercise training in patients with chronic kidney disease. Faseb J 34(1):1755–1767

    Article  CAS  PubMed  Google Scholar 

  103. Hu G, Xu L, Ma Y, Kohzuki M, Ito O (2020) Chronic exercise provides renal-protective effects with upregulation of fatty acid oxidation in the kidney of high fructose-fed rats. Am J Physiol Renal Physiol 318(3):F826–F834

    Article  PubMed  Google Scholar 

  104. Wu F, Li Z, Cai M, Xi Y, Xu Z, Zhang Z et al (2020) Aerobic exercise alleviates oxidative stress-induced apoptosis in kidneys of myocardial infarction mice by inhibiting ALCAT1 and activating FNDC5/Irisin signaling pathway. Free Radic Biol Med 158:171–180

    Article  CAS  PubMed  Google Scholar 

  105. Ogawa Y, Takahashi J, Sakuyama A, Xu L, Miura T, Muroya Y et al (2020) Exercise training delays renal disorders with decreasing oxidative stress and increasing production of 20-hydroxyeicosatetraenoic acid in Dahl salt-sensitive rats. J Hypertens 38(7):1336–1346

    Article  CAS  PubMed  Google Scholar 

  106. Aryuyuen N, Tudpor K (2021) Aerobic exercise program improves renal functions in patients with chronic kidney disease stages 1 and 2: a randomized controlled trial. Turk J Physiother Rehabil 32:3

    Google Scholar 

  107. Monno I, Ogura Y, Xu J, Koya D, Kitada M (2021) Exercise ameliorates diabetic kidney disease in type 2 diabetic fatty rats. Antioxidants 10(11):1754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Yang L, Li DX, Cao BQ, Liu SJ, Xu DH, Zhu XY et al (2021) Exercise training ameliorates early diabetic kidney injury by regulating the H2S/SIRT1/p53 pathway. FASEB J 35(9):e21823

    Article  CAS  PubMed  Google Scholar 

  109. Nogueiras R, Habegger KM, Chaudhary N, Finan B, Banks AS, Dietrich MO et al (2012) Sirtuin 1 and sirtuin 3: physiological modulators of metabolism. Physiol Rev. https://doi.org/10.1152/physrev.00022.2011

    Article  PubMed  Google Scholar 

  110. Zhang F, Wang S, Gan L, Vosler PS, Gao Y, Zigmond MJ et al (2011) Protective effects and mechanisms of sirtuins in the nervous system. Prog Neurobiol 95(3):373–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Cohen HY, Miller C, Bitterman KJ, Wall NR, Hekking B, Kessler B et al (2004) Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305(5682):390–392

    Article  CAS  PubMed  Google Scholar 

  112. Yacoub R, Lee K, He JC (2014) The role of SIRT1 in diabetic kidney disease. Front Endocrinol 5:166

    Article  Google Scholar 

  113. Haigis MC, Guarente LP (2006) Mammalian sirtuins—emerging roles in physiology, aging, and calorie restriction. Genes Dev 20(21):2913–2921

    Article  CAS  PubMed  Google Scholar 

  114. Yi J, Luo J (2010) SIRT1 and p53, effect on cancer, senescence and beyond. Biochim Biophys Acta BBA 1804(8):1684–1689

    Article  CAS  PubMed  Google Scholar 

  115. Kume S, Uzu T, Horiike K, Chin-Kanasaki M, Isshiki K, Araki S-I et al (2010) Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney. J Clin Invest 120(4):1043–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Liu R, Zhong Y, Li X, Chen H, Jim B, Zhou M-M et al (2014) Role of transcription factor acetylation in diabetic kidney disease. Diabetes 63(7):2440–2453

    Article  PubMed  PubMed Central  Google Scholar 

  117. Lin Q, Geng Y, Lin S, Tian Z (2016) Sirtuin1 (SIRT1) regulates tumor necrosis factor-alpha (TNF-α-Induced) aquaporin-2 (AQP2) expression in renal medullary collecting duct cells through inhibiting the NF-κB pathway. Med Sci Monit Basic Res 22:165

    Article  PubMed  PubMed Central  Google Scholar 

  118. He W, Wang Y, Zhang M-Z, You L, Davis LS, Fan H et al (2010) Sirt1 activation protects the mouse renal medulla from oxidative injury. J Clin Invest 120(4):1056–1068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Dong Y-J, Liu N, Xiao Z, Sun T, Wu S-H, Sun W-X et al (2014) Renal protective effect of sirtuin 1. J Diabetes Res. https://doi.org/10.1155/2014/843786

    Article  PubMed  PubMed Central  Google Scholar 

  120. Wu L, Zhang Y, Ma X, Zhang N, Qin G (2012) The effect of resveratrol on FoxO1 expression in kidneys of diabetic nephropathy rats. Mol Biol Rep 39(9):9085–9093

    Article  CAS  PubMed  Google Scholar 

  121. Li P, Liu Y, Qin X, Chen K, Wang R, Yuan L et al (2021) SIRT1 attenuates renal fibrosis by repressing HIF-2α. Cell Death Discov 7(1):1–10

    Google Scholar 

  122. Vasko R, Xavier S, Chen J, Lin CHS, Ratliff B, Rabadi M et al (2014) Endothelial sirtuin 1 deficiency perpetrates nephrosclerosis through downregulation of matrix metalloproteinase-14: relevance to fibrosis of vascular senescence. J Am Soc Nephrol 25(2):276–291

    Article  CAS  PubMed  Google Scholar 

  123. Clark AJ, Parikh SM (2021) Targeting energy pathways in kidney disease: the roles of sirtuins, AMPK, and PGC1α. Kidney Int 99(4):828–840

    Article  CAS  PubMed  Google Scholar 

  124. Zhang D, Li S, Cruz P, Kone BC (2009) Sirtuin 1 functionally and physically interacts with disruptor of telomeric silencing-1 to regulate α-ENaC transcription in collecting duct. J Biol Chem 284(31):20917–20926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Miyazaki R, Ichiki T, Hashimoto T, Inanaga K, Imayama I, Sadoshima J et al (2008) SIRT1, a longevity gene, downregulates angiotensin II type 1 receptor expression in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 28(7):1263–1269

    Article  CAS  PubMed  Google Scholar 

  126. Chandel N, Ayasolla K, Wen H, Lan X, Haque S, Saleem MA et al (2017) Vitamin D receptor deficit induces activation of renin angiotensin system via SIRT1 modulation in podocytes. Exp Mol Pathol 102(1):97–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Mattagajasingh I, Kim C-S, Naqvi A, Yamamori T, Hoffman TA, Jung S-B et al (2007) SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase. Proc Natl Acad Sci USA 104(37):14855–14860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Hong YA, Kim JE, Jo M, Ko G-J (2020) The role of sirtuins in kidney diseases. Int J Mol Sci 21(18):6686

    Article  CAS  PubMed Central  Google Scholar 

  129. Radak Z, Suzuki K, Posa A, Petrovszky Z, Koltai E, Boldogh I (2020) The systemic role of SIRT1 in exercise mediated adaptation. Redox Biol 35:101467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Bayod S, Del Valle J, Lalanza J, Sanchez-Roige S, de Luxan-Delgado B, Coto-Montes A et al (2012) Long-term physical exercise induces changes in sirtuin 1 pathway and oxidative parameters in adult rat tissues. Exp Gerontol 47(12):925–935

    Article  CAS  PubMed  Google Scholar 

  131. Nemoto S, Fergusson MM, Finkel T (2005) SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1α. J Biol Chem 280(16):16456–16460

    Article  CAS  PubMed  Google Scholar 

  132. Fulco M, Schiltz RL, Iezzi S, King MT, Zhao P, Kashiwaya Y et al (2003) Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state. Mol Cell 12(1):51–62

    Article  CAS  PubMed  Google Scholar 

  133. Thirupathi A, De Souza CT (2017) Multi-regulatory network of ROS: the interconnection of ROS, PGC-1 alpha, and AMPK-SIRT1 during exercise. J Physiol Biochem 73(4):487–494

    Article  CAS  PubMed  Google Scholar 

  134. Fontecha-Barriuso M, Martin-Sanchez D, Martinez-Moreno JM, Monsalve M, Ramos AM, Sanchez-Niño MD et al (2020) The role of PGC-1α and mitochondrial biogenesis in kidney diseases. Biomolecules 10(2):347

    Article  CAS  PubMed Central  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

NS, ZS, and MK helped to draft the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zahra Soltani.

Ethics declarations

Conflict of interests

The authors have no competing interests to declare.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabet, N., Soltani, Z. & Khaksari, M. The effects of exercise on kidney injury: the role of SIRT1. Mol Biol Rep 49, 4025–4038 (2022). https://doi.org/10.1007/s11033-022-07122-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07122-9

Keywords

Navigation