Skip to main content
Log in

Exploring the genetic potential of Pakistani soybean cultivars through RNA-seq based transcriptome analysis

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Soybean is largely grown and considered among the top oilseed crops. Three Pakistani cultivars, NARC-II (N), Swat-84 (S), and Rawal-I (R) were employed for RNA-Seq based transcriptome analysis to explore their genetic potential and performance in our local environment.

Methods and results

We grew the plants in glass house at same conditions and sampled leaves for RNA-Seq analysis in triplicate for each variety. We retrieved 2225 differentially expressed genes (DEGs) between S vs R, 2591 DEGs between S vs N, and 1221 DEGs between R vs N cultvars. These genes consist of transcription factors representing Basic Helix-loop Helix, myeloblastosis, ethylene response factors, and WRKY amino acid motif (WRKY) type major families that were up-regulated. KEGG pathway analysis revealed that MAPK, plant hormone signal transduction, and Phenylpropanoid biosynthesis pathways were the most dominant pathways involved in plant defense and growth. Comparative analysis showed that Swat-84 (S) cultivar had better gene expression among these varieties having higher number of DEGs, where mostly genes related to important phenotypic traits were up regulated.

Conclusions

This is a pilot study to investigate and functionally characterise the DEG involved in the stress response in the cultivars studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All RNA-Seq reads have been submitted to the NCBI Sequence Read Archive (SRA) database under accession number PRJNA718712.

References

  1. SoyStats. American Soybean Association (ASA) (2019) http://soystats.com/international-world-oilseed-production/. Accessed 26 Mar 2021

  2. Khurshid H et al (2017) Miracle crop: the present and future of soybean production in Pakistan. MOJ Biol Med 2(1):189–191

    Article  Google Scholar 

  3. Selle PH et al (2020) Synthetic and crystalline amino acids: alternatives to soybean meal in chicken-meat production. Animals (Basel) 10(4):729

    Article  Google Scholar 

  4. Ullah A et al (2021) Assessment of phenotypic and molecular diversity in soybean [Glycine max (L.) Merr.] germplasm using morpho-biochemical attributes and SSR markers. Genet Resourc Crop Evolut 68:2827

    Article  CAS  Google Scholar 

  5. Anwar Malik MF et al (2016) Analysis of genetic diversity of soybean germplasm from five different origins using RAPD markers. Acta Agric Scand Sect B Soil Plant Sci 67(2):148–154

    Google Scholar 

  6. Pakistan: Oilseeds and Products Annual (2020) https://www.fas.usda.gov/data/pakistan-oilseeds-and-products-annual-5. Accessed 27 Mar 2021

  7. Asad SA (2020) Agriculture: soya bean a miracle crop for national food security. https://www.dawn.com/news/1527911. Accessed 27 Mar 2021

  8. Dong Y et al (2001) The genetic diversity of annual wild soybeans grown in China. Theor Appl Genet 103(1):98–103

    Article  Google Scholar 

  9. Anwar Malik MF et al (2017) Analysis of genetic diversity of soybean germplasm from five different origins using RAPD markers. Acta Agric Scand Sect B 67(2):148–154

    CAS  Google Scholar 

  10. Iqbal Z et al (2010) Genetic divergence and correlation studies of soybean [Glycine max (L.) Merrill.] genotypes. Genet Mol Biol 42(2):971–976

    Google Scholar 

  11. Vidal RO et al (2012) Identification of SNPs in RNA-seq data of two cultivars of Glycine max (soybean) differing in drought resistance. Genet Mol Biol 35(1 suppl):331–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Du H et al (2019) RNA-Seq analysis reveals transcript diversity and active genes after common cutworm (Spodoptera litura Fabricius) attack in resistant and susceptible wild soybean lines. BMC Genomics 20(1):237

    Article  PubMed  PubMed Central  Google Scholar 

  13. Baig DD (2021) Soybean. http://www.parc.gov.pk/index.php/en/csi/137-narc/crop-sciences-institue/731-soybean. Accessed 19 May 2021

  14. Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. Babraham Bioinformatics, Babraham Institute, Cambridge

    Google Scholar 

  15. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17(1):10–12

    Article  Google Scholar 

  16. Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12(4):357–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liao Y, Smyth GK, Shi W (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30(7):923–930

    Article  CAS  PubMed  Google Scholar 

  18. Mortazavi A et al (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5(7):621–628

    Article  CAS  PubMed  Google Scholar 

  19. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140

    Article  CAS  PubMed  Google Scholar 

  20. Kolberg L et al (2020) gprofiler2—an R package for gene list functional enrichment analysis and namespace conversion toolset g: Profiler. F1000Research 9:709

    Article  Google Scholar 

  21. Reimand J et al (2016) g: Profiler—a web server for functional interpretation of gene lists (2016 update). Nucleic Acid Res 44(W1):W83–W89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yu GJB (2018) clusterProfiler: universal enrichment tool for functional and comparative study, p. 256784

  23. Du J et al (2014) KEGG-PATH: Kyoto encyclopedia of genes and genomes-based pathway analysis using a path analysis model. Mol BioSyst 10(9):2441–2447

    Article  CAS  PubMed  Google Scholar 

  24. Zheng Y et al (2016) iTAK: a program for genome-wide prediction and classification of plant transcription factors, transcriptional regulators, and protein kinases. Mol Plant 9(12):1667–1670

    Article  CAS  PubMed  Google Scholar 

  25. Gharibi S et al (2019) The effect of drought stress on polyphenolic compounds and expression of flavonoid biosynthesis related genes in Achillea pachycephala Rech.f. Phytochemistry 162:90–98

    Article  CAS  PubMed  Google Scholar 

  26. Schroeter H et al (2002) MAPK signaling in neurodegeneration: influences of flavonoids and of nitric oxide. Neurobiol Aging 23(5):861–880

    Article  CAS  PubMed  Google Scholar 

  27. Selmar D (2008) Potential of salt and drought stress to increase pharmaceutical significant secondary compounds in plants. Landbauforschung Volkenrode 58(1/2):139

    Google Scholar 

  28. Ma D et al (2014) Expression of flavonoid biosynthesis genes and accumulation of flavonoid in wheat leaves in response to drought stress. Plant Physiol Biochem 80:60–66

    Article  CAS  PubMed  Google Scholar 

  29. Sharma A et al (2016) Pre-sowing seed treatment with 24-epibrassinolide ameliorates pesticide stress in Brassica juncea L. through the modulation of stress markers. Front Plant Sci 7:1569

    Article  PubMed  PubMed Central  Google Scholar 

  30. Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K (2014) The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Front Plant Sci 5:170

    Article  PubMed  PubMed Central  Google Scholar 

  31. Nuruzzaman M, Sharoni AM, Kikuchi S (2013) Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants. Front Microbiol 4:248

    Article  PubMed  PubMed Central  Google Scholar 

  32. Moffat CS et al (2012) ERF5 and ERF6 play redundant roles as positive regulators of JA/Et-mediated defense against Botrytis cinerea in Arabidopsis. PLoS ONE 7(4):e35995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Riechmann JL, Meyerowitz EM (1998) The AP2/EREBP family of plant transcription factors. Biol Chem 379(6):633–646

    CAS  PubMed  Google Scholar 

  34. Huang Z et al (2017) APETALA 2 antagonizes the transcriptional activity of AGAMOUS in regulating floral stem cells in Arabidopsis thaliana. New Phytol 215(3):1197–1209

    Article  CAS  PubMed  Google Scholar 

  35. Ohto MA et al (2009) Effects of APETALA2 on embryo, endosperm, and seed coat development determine seed size in Arabidopsis. Sex Plant Reprod 22(4):277–289

    Article  PubMed  PubMed Central  Google Scholar 

  36. Johnson ET, Dowd PF (2004) Differentially enhanced insect resistance, at a cost, in Arabidopsis thaliana constitutively expressing a transcription factor of defensive metabolites. J Agric Food Chem 52(16):5135–5138

    Article  CAS  PubMed  Google Scholar 

  37. Mengiste T et al (2003) The BOTRYTIS SUSCEPTIBLE1 gene encodes an R2R3MYB transcription factor protein that is required for biotic and abiotic stress responses in Arabidopsis. Plant Cell 15(11):2551–2565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Soler M et al (2015) The Eucalyptus grandis R2R3-MYB transcription factor family: evidence for woody growth-related evolution and function. New Phytol 206(4):1364–1377

    Article  CAS  PubMed  Google Scholar 

  39. Koini MA et al (2009) High temperature-mediated adaptations in plant architecture require the bHLH transcription factor PIF4. Curr Biol 19(5):408–413

    Article  CAS  PubMed  Google Scholar 

  40. Franklin KA et al (2011) Phytochrome-interacting factor 4 (PIF4) regulates auxin biosynthesis at high temperature. Proc Natl Acad Sci USA 108(50):20231–20235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Guan Y et al (2014) Phosphorylation of a WRKY transcription factor by MAPKs is required for pollen development and function in Arabidopsis. PLoS Genet 10(5):e1004384

    Article  PubMed  PubMed Central  Google Scholar 

  42. Dilkes BP et al (2008) The maternally expressed WRKY transcription factor TTG2 controls lethality in interploidy crosses of Arabidopsis. PLoS Biol 6(12):2707–2720

    Article  CAS  PubMed  Google Scholar 

  43. Grunewald W et al (2013) Tightly controlled WRKY23 expression mediates Arabidopsis embryo development. EMBO Rep 14(12):1136–1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rinerson CI et al (2015) The WRKY transcription factor family and senescence in switchgrass. BMC Genomics 16(1):912

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zheng Z et al (2006) Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. Planr J 48(4):592–605

    Article  CAS  Google Scholar 

  46. Mao G et al (2011) Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis. Plant Cell 23(4):1639–1653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Qi T et al (2014) Arabidopsis DELLA and JAZ proteins bind the WD-repeat/bHLH/MYB complex to modulate gibberellin and jasmonate signaling synergy. Plant Cell 26(3):1118–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Higher Education Commission (HEC), Pakistan has provided funds through its NRPU Project No. 7838/Balochistan/NRPU/R&D/HEC/2017.

Author information

Authors and Affiliations

Authors

Contributions

ZJ and WH designed and executed the experiment. KN grew the plants and did sampling for RNA-Seq, AT and WA did data analysis. HA and SF contributed to manuscript preparation and review.

Corresponding author

Correspondence to Waseem Haider.

Ethics declarations

Conflict of interest

The authors decolor no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 1120 kb)

11033_2021_7104_MOESM2_ESM.pptx

Supplementary Fig. S1 An overview of regulated TFs in three comparisons. a Differentially regulated TFs show that mostly TFs are upregulated. b Venn diagram showing the overall differentially expressed TFs. c The number of TF of different families identified in the DEGs of three comparisons. (PPTX 189 kb)

Supplementary Fig. S2 KEGG pathway enrichment analysis of DEGs of three comparisons. (PPTX 43 kb)

11033_2021_7104_MOESM4_ESM.pptx

Supplementary Fig. S3 a KEGG pathway analysis showing the enrichment of DEGs in “Phenylpropanoid Biosynthesis pathway”. b Heatmap illustrating the expression pattern of DEGs of three comparisons. (PPTX 761 kb)

11033_2021_7104_MOESM5_ESM.pptx

Supplementary Fig. S4 Plant hormone signal transduction pathway showing the expression pattern of three companions. (PPTX 1060 kb)

11033_2021_7104_MOESM6_ESM.pptx

Supplementary Fig. S5 MAPK pathway illustrating the enrichment of DEGs and heatmap showing the expression pattern of all DEGs of three comparisons. (PPTX 974 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tariq, A., Jabeen, Z., Farrakh, S. et al. Exploring the genetic potential of Pakistani soybean cultivars through RNA-seq based transcriptome analysis. Mol Biol Rep 49, 2889–2897 (2022). https://doi.org/10.1007/s11033-021-07104-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-07104-3

Keywords

Navigation