Skip to main content

Advertisement

Log in

The significance of the SDF-1/CXCR4 signaling pathway in the normal development

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Chemokines are chemoattractants that can regulate cell movement and adhesion. SDF-1 [stromal cell-derived factor-1 (SDF-1)] is a homeostatic CXC chemokine. SDF-1 and its receptors [CXC chemokine receptor 4 (CXCR4)] form a signaling pathway that plays critical roles in different pathological and physiological mechanisms, including embryogenesis, wound healing, angiogenesis, tumor growth, and proliferation. Therefore, the current review aimed to summarize the related studies that addressed the molecular signature of the SDF-1/CXCR4 pathway and to explain how this axis is involved in normal events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Proudfoot AE (2002) Chemokine receptors: multifaceted therapeutic targets. Nat Rev Immunol 2(2):106–115

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Kufareva I, Salanga CL, Handel TM (2015) Chemokine and chemokine receptor structure and interactions: implications for therapeutic strategies. Immunol Cell Biol 93(4):372–383

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Ratajczak M, Zuba-Surma E, Kucia M, Reca R, Wojakowski W, Ratajczak J (2006) The pleiotropic effects of the SDF-1–CXCR4 axis in organogenesis, regeneration and tumorigenesis. Leukemia 20(11):1915–1924

    CAS  PubMed  Google Scholar 

  4. Shiba Y, Takahashi M, Yoshioka T, Yajima N, Morimoto H, Izawa A, Ise H, Hatake K, Motoyoshi K, Ikeda U (2007) M-CSF accelerates neointimal formation in the early phase after vascular injury in mice: the critical role of the SDF-1–CXCR4 system. Arterioscler, Thromb, Vasc Biol 27:283–2892

    CAS  Google Scholar 

  5. Yamaguchi J-i, Kusano KF, Masuo O, Kawamoto A, Silver M, Murasawa S, Bosch-Marce M, Masuda H, Losordo DW, Isner JM (2003) Stromal cell–derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation 107(9):1322–1328

    CAS  PubMed  Google Scholar 

  6. Teicher BA, Fricker SP (2010) CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin Cancer Res 16(11):2927. https://doi.org/10.1158/1078-0432.CCR-09-2329

    Article  CAS  PubMed  Google Scholar 

  7. Shirozu M, Nakano T, Inazawa J, Tashiro K, Tada H, Shinohara T, Honjo T (1995) Structure and chromosomal localization of the human stromal cell-derived factor 1 (SDF1) gene. Genomics 28(3):495–500

    CAS  PubMed  Google Scholar 

  8. Crump MP, Gong JH, Loetscher P, Rajarathnam K, Amara A, Arenzana-Seisdedos F, Virelizier JL, Baggiolini M, Sykes BD, Clark‐Lewis I (1997) Solution structure and basis for functional activity of stromal cell‐derived factor‐1; dissociation of CXCR4 activation from binding and inhibition of HIV‐1. EMBO J 16(23):6996–7007

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kleist AB, Getschman AE, Ziarek JJ, Nevins AM, Gauthier P-A, Chevigné A, Szpakowska M, Volkman BF (2016) New paradigms in chemokine receptor signal transduction: moving beyond the two-site model. Biochem Pharmacol 114:53–68

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Zlotnik A, Yoshie O (2000) Chemokines: a new classification system and their role in immunity. Immunity 12(2):121–127

    CAS  PubMed  Google Scholar 

  11. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Wu B, Chien EY, Mol CD, Fenalti G, Liu W, Katritch V, Abagyan R, Brooun A, Wells P, Bi FC (2010) Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 330(6007):1066–1071

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Pawig L, Klasen C, Weber C, Bernhagen J, Noels H (2015) Diversity and inter-connections in the CXCR4 chemokine receptor/ligand family: molecular perspectives. Front Immunol. https://doi.org/10.3389/fimmu.2015.00429

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kufareva I, Stephens BS, Holden LG, Qin L, Zhao C, Kawamura T, Abagyan R, Handel TM (2014) Stoichiometry and geometry of the CXC chemokine receptor 4 complex with CXC ligand 12: molecular modeling and experimental validation. Proc Natl Acad Sci 111(50):E5363–E5372

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Qin L, Kufareva I, Holden LG, Wang C, Zheng Y, Zhao C, Fenalti G, Wu H, Han GW, Cherezov V (2015) Crystal structure of the chemokine receptor CXCR4 in complex with a viral chemokine. Science 347(6226):1117–1122

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Schioppa T, Uranchimeg B, Saccani A, Biswas SK, Doni A, Rapisarda A, Bernasconi S, Saccani S, Nebuloni M, Vago L (2003) Regulation of the chemokine receptor CXCR4 by hypoxia. J Exp Med 198(9):1391–1402

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Lapidot T, Dar A, Kollet O (2005) How do stem cells find their way home? Blood 106(6):1901–1910

    CAS  PubMed  Google Scholar 

  18. Knight KM, Ghosh S, Campbell SL, Lefevre TJ, Olsen RH, Smrcka AV, Valentin NH, Yin G, Vaidehi N, Dohlman HG (2021) A universal allosteric mechanism for G protein activation. Mol Cell 81(7):1384–1396. e1386

    CAS  PubMed  Google Scholar 

  19. Goldsmith Z, Dhanasekaran D (2007) G protein regulation of MAPK networks. Oncogene 26(22):3122–3142

    CAS  PubMed  Google Scholar 

  20. Mellado M, Rodríguez-Frade JM, Mañes S, Martínez-A C (2001) Chemokine signaling and functional responses: the role of receptor dimerization and TK pathway activation. Annu Rev Immunol 19(1):397–421

    CAS  PubMed  Google Scholar 

  21. Kucia M, Jankowski K, Reca R, Wysoczynski M, Bandura L, Allendorf DJ, Zhang J, Ratajczak J, Ratajczak MZ (2004) CXCR4–SDF-1 signalling, locomotion, chemotaxis and adhesion. J Mol Histol 35(3):233–245

    CAS  PubMed  Google Scholar 

  22. Phillips RJ, Mestas J, Gharaee-Kermani M, Burdick MD, Sica A, Belperio JA, Keane MP, Strieter RM (2005) Epidermal growth factor and hypoxia-induced expression of CXC chemokine receptor 4 on non-small cell lung cancer cells is regulated by the phosphatidylinositol 3-kinase/PTEN/AKT/mammalian target of rapamycin signaling pathway and activation of hypoxia inducible factor-1α. J Biol Chem 280(23):22473–22481

    CAS  PubMed  Google Scholar 

  23. Vila-Coro AJ, Rodríguez‐Frade JM, De Ana AM, Moreno‐Ortíz MC, Martínez‐A C, Mellado M (1999) The chemokine SDF‐lα triggers CXCR4 receptor dimerization and activates the JAK/STAT pathway. FASEB J 13(13):1699–1710

    CAS  PubMed  Google Scholar 

  24. Fong AM, Premont RT, Richardson RM, Yen-Rei AY, Lefkowitz RJ, Patel DD (2002) Defective lymphocyte chemotaxis in β-arrestin2-and GRK6-deficient mice. Proc Natl Acad Sci 99(11):7478–7483

    CAS  PubMed  PubMed Central  Google Scholar 

  25. DeFea K, Zalevsky J, Thoma M, Dery O, Mullins R, Bunnett N (2000) β-Arrestin–dependent endocytosis of proteinase-activated receptor 2 is required for intracellular targeting of activated ERK1/2. J Cell Biol 148(6):1267–1282

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Lefkowitz RJ, Shenoy SK (2005) Transduction of receptor signals by ß-arrestins. Science 308(5721):512–517

    CAS  PubMed  Google Scholar 

  27. Recasens Zorzo C (2018) Preclinical evaluation of the antitumor activity of a new CXCR4 inhibitor: a novel therapeutic approach in diffuse large B-cell lymphoma. Ph.D. thesis

  28. Sun Y, Cheng Z, Ma L, Pei G (2002) β-Arrestin2 is critically involved in CXCR4-mediated chemotaxis, and this is mediated by its enhancement of p38 MAPK activation. J Biol Chem 277(51):49212–49219

    CAS  PubMed  Google Scholar 

  29. Busillo JM, Benovic JL (2007) Regulation of CXCR4 signaling. Biochim et Biophys Acta (BBA)—Biomembr 1768:952–963. https://doi.org/10.1016/j.bbamem.2006.11.002

    Article  CAS  Google Scholar 

  30. Cencioni C, Capogrossi MC, Napolitano M (2012) The SDF-1/CXCR4 axis in stem cell preconditioning. Cardiovasc Res 94(3):400–407. https://doi.org/10.1093/cvr/cvs132

    Article  CAS  PubMed  Google Scholar 

  31. Julien E, El Omar R, Tavian M (2016) Origin of the hematopoietic system in the human embryo. FEBS Lett 590(22):3987–4001

    CAS  PubMed  Google Scholar 

  32. Savage AM, Alberio R, Johnson AD (2021) Germline competent mesoderm: the substrate for vertebrate germline and somatic stem cells? Biol Open 10(10):bio058890

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Lataillade J-J, Clay D, Bourin P, Hérodin Fi C, Dupuy C, Jasmin C, Le Bousse-Kerdiles M-C (2002) Stromal cell–derived factor 1 regulates primitive hematopoiesis by suppressing apoptosis and by promoting G0/G1 transition in CD34+ cells: evidence for an autocrine/paracrine mechanism. Blood, J Am Soc Hematol 99(4):1117–1129

    CAS  Google Scholar 

  34. Singh P, Mohammad KS, Pelus LM (2020) CXCR4 expression in the bone marrow microenvironment is required for hematopoietic stem and progenitor cell maintenance and early hematopoietic regeneration after myeloablation. Stem Cells 38(7):849–859

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Wei Q, Frenette PS (2018) Niches for hematopoietic stem cells and their progeny. Immunity 48(4):632–648

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Fidler IJ, Kumar R, Bielenberg DR, Ellis LM (1998) Molecular determinants of angiogenesis in cancer metastasis. Cancer J Sci Am 4:S58-66

    PubMed  Google Scholar 

  37. García-Cuesta EM, Santiago CA, Vallejo-Díaz J, Juarranz Y, Rodríguez-Frade JM, Mellado M (2019) The role of the CXCL12/CXCR4/ACKR3 axis in autoimmune diseases. Front Endocrinol 10:585

    Google Scholar 

  38. Mirshahi F, Pourtau J, Li H, Muraine M, Trochon V, Legrand E, Vannier J-P, Soria J, Vasse M, Soria C (2000) SDF-1 activity on microvascular endothelial cells: consequences on angiogenesis in in vitro and in vivo models. Thromb Res 99(6):587–594

    CAS  PubMed  Google Scholar 

  39. Kijowski J, Baj-Krzyworzeka M, Majka M, Reca R, Marquez LA, Christofidou‐Solomidou M, Janowska‐Wieczorek A, Ratajczak MZ (2001) The SDF‐1‐CXCR4 axis stimulates VEGF secretion and activates integrins but does not affect proliferation and survival in lymphohematopoietic cells. Stem Cells 19(5):453–466

    CAS  PubMed  Google Scholar 

  40. Salcedo R, Oppenheim JJ (2003) Role of chemokines in angiogenesis: CXCL12/SDF-1 and CXCR4 interaction, a key regulator of endothelial cell responses. Microcirculation 10(3–4):359–370

    CAS  PubMed  Google Scholar 

  41. Molino M, Woolkalis MJ, Prevost N, Praticó D, Barnathan ES, Taraboletti G, Haggarty BS, Hesselgesser J, Horuk R, Hoxie JA (2000) CXCR4 on human endothelial cells can serve as both a mediator of biological responses and as a receptor for HIV-2. Biochim et Biophys Acta (BBA)-Mol Basis Dis 1500:2227–2402

    Google Scholar 

  42. Döring Y, Pawig L, Weber C, Noels H (2014) The CXCL12/CXCR4 chemokine ligand/receptor axis in cardiovascular disease. Front Physiol. https://doi.org/10.3389/fphys.2014.00212

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zhang Q, Guo R, Schwarz EM, Boyce BF, Xing L (2008) TNF inhibits production of stromal cell-derived factor 1 by bone stromal cells and increases osteoclast precursor mobilization from bone marrow to peripheral blood. Arthritis Res Ther 10(2):1–10

    Google Scholar 

  44. Petit I, Szyper-Kravitz M, Nagler A, Lahav M, Peled A, Habler L, Ponomaryov T, Taichman RS, Arenzana-Seisdedos F, Fujii N (2002) G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol 3(7):687–694

    CAS  PubMed  Google Scholar 

  45. Broxmeyer HE, Orschell CM, Clapp DW, Hangoc G, Cooper S, Plett PA, Liles WC, Li X, Graham-Evans B, Campbell TB (2005) Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J Exp Med 201(8):1307–1318

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Hattori K, Heissig B, Tashiro K, Honjo T, Tateno M, Shieh J-H, Hackett NR, Quitoriano MS, Crystal RG, Rafii S (2001) Plasma elevation of stromal cell–derived factor-1 induces mobilization of mature and immature hematopoietic progenitor and stem cells. Blood, J Am Soc Hematol 97(11):3354–3360

    CAS  Google Scholar 

  47. Zaruba M-M, Franz W-M (2010) Role of the SDF-1-CXCR4 axis in stem cell-based therapies for ischemic cardiomyopathy. Exp Opin Biol Ther 10(3):321–335

    CAS  Google Scholar 

  48. Heissig B, Hattori K, Dias S, Friedrich M, Ferris B, Hackett NR, Crystal RG, Besmer P, Lyden D, Moore MA (2002) Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 109(5):625–637

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Ceradini DJ, Gurtner GC (2005) Homing to hypoxia: HIF-1 as a mediator of progenitor cell recruitment to injured tissue. Trends Cardiovasc Med 15(2):57–63

    CAS  PubMed  Google Scholar 

  50. Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME, Capla JM, Galiano RD, Levine JP, Gurtner GC (2004) Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 10(8):858–864

    CAS  PubMed  Google Scholar 

  51. Huang J, Chi H, Chi H, Qiu L, Wang Y, Qiu Z, Zhang J, Liu X, Yan J (2019) Stromal cell-derived factor 1 promotes cell migration to enhance bone regeneration after hypoxic preconditioning. Tissue Eng A 25(17–18):1300–1309

    CAS  Google Scholar 

  52. Shishehbor MH, Rundback J, Bunte M, Hammad TA, Miller L, Patel PD, Sadanandan S, Fitzgerald M, Pastore J, Kashyap V (2019) SDF-1 plasmid treatment for patients with peripheral artery disease (STOP-PAD): randomized, double-blind, placebo-controlled clinical trial. Vascu Med 24(3):200–207

    CAS  Google Scholar 

  53. Penn MS (2010) SDF-1: CXCR4 axis is fundamental for tissue preservation and repair. Am J Pathol 177(5):2166–2168

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Pasha Z, Wang Y, Sheikh R, Zhang D, Zhao T, Ashraf M (2008) Preconditioning enhances cell survival and differentiation of stem cells during transplantation in infarcted myocardium. Cardiovascu Res 77(1):134–142

    CAS  Google Scholar 

  55. Tang YL, Qian K, Zhang YC, Shen L, Phillips MI (2005) Mobilizing of haematopoietic stem cells to ischemic myocardium by plasmid-mediated stromal-cell-derived factor-1α treatment. Regul Pept 125(1–3):1–8

    CAS  PubMed  Google Scholar 

  56. Tögel F, Isaac J, Hu Z, Weiss K, Westenfelder C (2005) Renal SDF-1 signals mobilization and homing of CXCR4-positive cells to the kidney after ischemic injury. Kidney Int 67(5):1772–1784

    PubMed  Google Scholar 

  57. Mavier P, Martin N, Couchie D, Préaux A-M, Laperche Y, Zafrani ES (2004) Expression of stromal cell-derived factor-1 and of its receptor CXCR4 in liver regeneration from oval cells in rat. Am J Pathol 165(6):1969–1977

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Tachibana K, Hirota S, Iizasa H, Yoshida H, Kawabata K, Kataoka Y, Kitamura Y, Matsushima K, Yoshida N, Nishikawa S-i (1998) The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract. Nature 393(6685):591–594

    CAS  PubMed  Google Scholar 

  59. Sasaki M, Abe R, Fujita Y, Ando S, Inokuma D, Shimizu H (2008) Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. J Immunol 180(4):2581–2587

    CAS  PubMed  Google Scholar 

  60. Tang J, Wang J, Song H, Huang Y, Yang J, Kong X, Guo L, Zheng F, Zhang L (2010) Adenovirus-mediated stromal cell-derived factor-1 alpha gene transfer improves cardiac structure and function after experimental myocardial infarction through angiogenic and antifibrotic actions. Mol Biol Rep 37(4):1957–1969

    CAS  PubMed  Google Scholar 

  61. Penn MS, Mendelsohn FO, Schaer GL, Sherman W, Farr M, Pastore J, Rouy D, Clemens R, Aras R, Losordo DW (2013) An open-label dose escalation study to evaluate the safety of administration of nonviral stromal cell-derived factor-1 plasmid to treat symptomatic ischemic heart failure. Circul Res 112(5):816–825

    CAS  Google Scholar 

  62. Otsuka H, Arimura N, Sonoda S, Nakamura M, Hashiguchi T, Maruyama I, Nakao S, Hafezi-Moghadam A, Sakamoto T (2010) Stromal cell-derived factor-1 is essential for photoreceptor cell protection in retinal detachment. Am J Pathol 177(5):2268–2277

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Djuric Z, Sharei V, Rudofsky G, Morcos M, Li H, Hammes H-P, Nawroth PP, Bierhaus A, Humpert PM, Jonas JB (2010) Association of homozygous SDF-1 3′ A genotype with proliferative diabetic retinopathy. Acta Diabetol 47(1):79–82

    CAS  PubMed  Google Scholar 

  64. Cheng X, Wang H, Zhang X, Zhao S, Zhou Z, Mu X, Zhao C, Teng W (2017) The role of SDF-1/CXCR4/CXCR7 in neuronal regeneration after cerebral ischemia. Front NeuroSci 11:590

    PubMed  PubMed Central  Google Scholar 

  65. Bakondi B, Shimada IS, Peterson BM, Spees JL (2011) SDF-1α secreted by human CD133-derived multipotent stromal cells promotes neural progenitor cell survival through CXCR7. Stem Cells Dev 20(6):1021–1029

    CAS  PubMed  Google Scholar 

  66. Lu M, Grove EA, Miller RJ (2002) Abnormal development of the hippocampal dentate gyrus in mice lacking the CXCR4 chemokine receptor. Proc Natl Acad Sci 99(10):7090–7095

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Tran PB, Banisadr G, Ren D, Chenn A, Miller RJ (2007) Chemokine receptor expression by neural progenitor cells in neurogenic regions of mouse brain. J Comp Neurol 500(6):1007–1034

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Merino JJ, Bellver-Landete V, Oset‐Gasque MJ, Cubelos B (2015) CXCR4/CXCR7 molecular involvement in neuronal and neural progenitor migration: focus in CNS repair. J Cell Physiol 230(1):27–42

    CAS  PubMed  Google Scholar 

  69. Arakawa Y, Bito H, Furuyashiki T, Tsuji T, Takemoto-Kimura S, Kimura K, Nozaki K, Hashimoto N, Narumiya S (2003) Control of axon elongation via an SDF-1α/Rho/mDia pathway in cultured cerebellar granule neurons. J Cell Biol 161(2):381–391

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Pujol F, Kitabgi P, Boudin H (2005) The chemokine SDF-1 differentially regulates axonal elongation and branching in hippocampal neurons. J Cell Sci 118(5):1071–1080

    CAS  PubMed  Google Scholar 

  71. López-Bendito G, Sánchez-Alcaniz JA, Pla R, Borrell V, Picó E, Valdeolmillos M, Marín O (2008) Chemokine signaling controls intracortical migration and final distribution of GABAergic interneurons. J Neurosci 28(7):1613–1624

    PubMed  PubMed Central  Google Scholar 

  72. Smith SE, Coker NK, Tucker ES (2020) JNK signaling regulates cellular mechanics of cortical interneuron migration. Eneuro. https://doi.org/10.1523/ENEURO.0132-20.2020

    Article  PubMed  PubMed Central  Google Scholar 

  73. Manukjan N, Ahmed Z, Fulton D, Blankesteijn WM, Foulquier S (2020) A systematic review of WNT signaling in endothelial cell oligodendrocyte interactions: potential relevance to cerebral small vessel disease. Cells 9(6):1545

    CAS  PubMed Central  Google Scholar 

  74. Barbieri F, Bajetto A, Porcile C, Pattarozzi A, Schettini G, Florio T (2007) Role of stromal cell-derived factor 1 (SDF1/CXCL12) in regulating anterior pituitary function. J Mol Endocrinol 38(3):383–389

    CAS  PubMed  Google Scholar 

  75. Barbieri F, Bajetto A, Stumm R, Pattarozzi A, Porcile C, Zona G, Dorcaratto A, Ravetti J-L, Minuto F, Spaziante R (2008) Overexpression of stromal cell–derived factor 1 and its receptor CXCR4 induces autocrine/paracrine cell proliferation in human pituitary adenomas. Clin Cancer Res 14(16):5022–5032

    CAS  PubMed  Google Scholar 

  76. Lee Y, Kim JM, Lee EJ (2008) Functional expression of CXCR4 in somatotrophs: CXCL12 activates GH gene, GH production and secretion, and cellular proliferation. J Endocrinol 199(2):191–199

    CAS  PubMed  Google Scholar 

  77. Horiguchi K, Ilmiawati C, Fujiwara K, Tsukada T, Kikuchi M, Yashiro T (2012) Expression of chemokine CXCL12 and its receptor CXCR4 in folliculostellate (FS) cells of the rat anterior pituitary gland: the CXCL12/CXCR4 axis induces interconnection of FS cells. Endocrinology 153(4):1717–1724. doi:https://doi.org/10.1210/en.2011-1937

    Article  CAS  PubMed  Google Scholar 

  78. Chung Y, Kim H, Seon S, Yang H (2017) Serum cytokine levels are related to nesfatin-1/nucb2 expression in the implantation sites of spontaneous abortion model of cba/j× dba/2 mice. Dev Reprod 21(1):35

    PubMed  PubMed Central  Google Scholar 

  79. Martinez CA, Alvarez-Rodriguez M, Casado-Bedmar M, Rodriguez-Martinez H (2021) In vitro maturation of cumulus–oocyte complexes and in vitro sperm capacitation significantly increase the expression and enhance the location of the CXCL12 and CXCR4 anchoring attractant complex in pigs. Animals 11(1):153

    PubMed Central  Google Scholar 

  80. Peleli M, Moustakas A, Papapetropoulos A (2020) Endothelial-tumor cell interaction in brain and CNS malignancies. Int J Mol Sci. https://doi.org/10.3390/ijms21197371

    Article  PubMed  PubMed Central  Google Scholar 

  81. Kayali AG, Van Gunst K, Campbell IL, Stotland A, Kritzik M, Liu G, Flodström-Tullberg M, Zhang Y-Q, Sarvetnick N (2003) The stromal cell–derived factor-1α/CXCR4 ligand–receptor axis is critical for progenitor survival and migration in the pancreas. J Cell Biol 163(4):859–869

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Liu Z, Habener J (2009) Stromal cell-derived factor-1 promotes survival of pancreatic beta cells by the stabilisation of beta-catenin and activation of transcription factor 7-like 2 (TCF7L2). Diabetologia 52(8):1589–1598

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Liu Z, Stanojevic V, Avadhani S, Yano T, Habener J (2011) Stromal cell-derived factor-1 (SDF-1)/chemokine (CXC motif) receptor 4 (CXCR4) axis activation induces intra-islet glucagon-like peptide-1 (GLP-1) production and enhances beta cell survival. Diabetologia 54(8):2067–2076

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Nair S, Schilling TF (2008) Chemokine signaling controls endodermal migration during zebrafish gastrulation. Science 322(5898):89–92

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Boehm T, Swann JB (2014) Origin and evolution of adaptive immunity. Annu Rev Anim Biosci 2(1):259–283

    CAS  PubMed  Google Scholar 

  86. Lucas B, McCarthy NI, Baik S, Cosway E, James KD, Parnell SM, White AJ, Jenkinson WE, Anderson G (2016) Control of the thymic medulla and its influence on αβT-cell development. Immunol Rev 271(1):23–37

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Abramson J, Anderson G (2017) Thymic epithelial cells. Annu Rev Immunol 35:85–118

    CAS  PubMed  Google Scholar 

  88. Lucas B, White AJ, Parnell SM, Henley PM, Jenkinson WE, Anderson G (2017) Progressive changes in CXCR4 expression that define thymocyte positive selection are dispensable for both innate and conventional αβT-cell development. Sci Rep 7(1):5068. https://doi.org/10.1038/s41598-017-05182-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Janas ML, Varano G, Gudmundsson K, Noda M, Nagasawa T, Turner M (2010) Thymic development beyond β-selection requires phosphatidylinositol 3-kinase activation by CXCR4. J Exp Med 207(1):247–261

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Trampont PC, Tosello-Trampont A-C, Shen Y, Duley AK, Sutherland AE, Bender TP, Littman DR, Ravichandran KS (2010) CXCR4 acts as a costimulator during thymic β-selection. Nat Immunol 11(2):162–170

    CAS  PubMed  Google Scholar 

  91. Ferrandino F, Bernardini G, Tsaouli G, Grazioli P, Campese AF, Noce C, Ciuffetta A, Vacca A, Besharat ZM, Bellavia D (2018) Intrathymic Notch3 and CXCR4 combinatorial interplay facilitates T-cell leukemia propagation. Oncogene 37(49):6285–6298

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Djavaheri-Mergny M, Giuriato S, Tschan MP, Humbert M (2019) Therapeutic modulation of autophagy in leukaemia and lymphoma. Cells 8(2):103

    CAS  PubMed Central  Google Scholar 

  93. Peters OA, Paranjpe A, Gaudin A (2021) Dentine-pulp complex regeneration. Regenerative approaches in dentistry. Springer, New York, pp 35–62

    Google Scholar 

  94. Kim J-J, Kim S-J, Kim Y-S, Kim S-Y, Park S-H, Kim E-C (2012) The role of SIRT1 on angiogenic and odontogenic potential in human dental pulp cells. J Endod 38(7):899–906

    PubMed  Google Scholar 

  95. Kucia M, Reca R, Miekus K, Wanzeck J, Wojakowski W, Janowska-Wieczorek A, Ratajczak J, Ratajczak MZ (2005) Trafficking of normal stem cells and metastasis of cancer stem cells involve similar mechanisms: pivotal role of the SDF‐1–CXCR4 axis. Stem Cells 23(7):879–894

    CAS  PubMed  Google Scholar 

  96. Potter ML, Smith K, Vyavahare S, Kumar S, Periyasamy-Thandavan S, Hamrick M, Isales CM, Hill WD, Fulzele S (2021) Characterization of differentially expressed miRNAs by CXCL12/SDF-1 in human bone marrow stromal cells. Biomol Concepts 12(1):132–143

    CAS  PubMed  Google Scholar 

  97. Zhu W, Boachie-Adjei O, Rawlins BA, Frenkel B, Boskey AL, Ivashkiv LB, Blobel CP (2007) A novel regulatory role for stromal-derived factor-1 signaling in bone morphogenic protein-2 osteogenic differentiation of mesenchymal C2C12 cells. J Biol Chem 282(26):18676–18685

    CAS  PubMed  Google Scholar 

  98. Guang LG, Boskey AL, Zhu W (2012) Regulatory role of stromal cell-derived factor-1 in bone morphogenetic protein-2-induced chondrogenic differentiation in vitro. Int J Biochem Cell Biol 44(11):1825–1833

    CAS  PubMed  Google Scholar 

  99. Kitagawa M, Ueda H, Iizuka S, Sakamoto K, Oka H, Kudo Y, Ogawa I, Miyauchi M, Tahara H, Takata T (2007) Immortalization and characterization of human dental pulp cells with odontoblastic differentiation. Arch Oral Biol 52(8):727–731

    CAS  PubMed  Google Scholar 

  100. Jiang H-w, Ling J-q, Gong Q-m (2008) The expression of stromal cell–derived factor 1 (SDF-1) in inflamed human dental pulp. J Endod 34(11):1351–1354

    PubMed  Google Scholar 

  101. Jiang L, Zhu Y-Q, Du R, Gu Y-X, Xia L, Qin F, Ritchie HH (2008) The expression and role of stromal cell–derived factor-1α–CXCR4 axis in human dental pulp. J Endod 34(8):939–944

    PubMed  PubMed Central  Google Scholar 

  102. Gong Q-m, Quan J-j, Jiang H-w, Ling J-q (2010) Regulation of the stromal cell–derived factor-1α–CXCR4 axis in human dental pulp cells. J Endod 36(9):1499–1503

    PubMed  Google Scholar 

  103. Li M, Sun X, Ma L, Jin L, Zhang W, Xiao M, Yu Q (2017) SDF-1/CXCR4 axis induces human dental pulp stem cell migration through FAK/PI3K/Akt and GSK3β/β-catenin pathways. Sci Rep 7(1):40161. doi:https://doi.org/10.1038/srep40161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zhao Y, Zhang H (2016) Update on the mechanisms of homing of adipose tissue–derived stem cells. Cytotherapy 18(7):816–827

    CAS  PubMed  Google Scholar 

  105. Baek SJ, Kang SK, Ra JC (2011) In vitro migration capacity of human adipose tissue-derived mesenchymal stem cells reflects their expression of receptors for chemokines and growth factors. Exp Mol Med 43(10):596–603

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Lin G, Wang G, Banie L, Ning H, Shindel AW, Fandel TM, Lue TF, Lin C-S (2010) Treatment of stress urinary incontinence with adipose tissue-derived stem cells. Cytotherapy 12(1):88–95

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Zhang H, Qiu X, Shindel AW, Ning H, Ferretti L, Jin X, Lin G, Lin C-S, Lue TF (2012) Adipose tissue-derived stem cells ameliorate diabetic bladder dysfunction in a type II diabetic rat model. Stem Cells Dev 21(9):1391–1400

    CAS  PubMed  Google Scholar 

  108. Cai A, Qiu R, Li L, Zheng D, Dong Y, Yu D, Huang Y, Rao S, Zhou Y, Mai W (2013) Atorvastatin treatment of rats with ischemia-reperfusion injury improves adipose-derived mesenchymal stem cell migration and survival via the SDF-1α/CXCR-4 axis. PLoS ONE 8(12):e79100

    PubMed  PubMed Central  Google Scholar 

  109. Kim M, Kim D-I, Kim EK, Kim C-W (2017) CXCR4 overexpression in human adipose tissue-derived stem cells improves homing and engraftment in an animal limb ischemia model. Cell Transplant 26(2):191–204. https://doi.org/10.3727/096368916X692708

    Article  PubMed  PubMed Central  Google Scholar 

  110. Zhao Y, Zhang H (2016) Update on the mechanisms of homing of adipose tissue–derived stem cells. Cytotherapy 18(7):816–827

    CAS  PubMed  Google Scholar 

  111. Bobis-Wozowicz S, Miekus K, Wybieralska E, Jarocha D, Zawisz A, Madeja Z, Majka M (2011) Genetically modified adipose tissue– derived mesenchymal stem cells overexpressing CXCR4 display increased motility, invasiveness, and homing to bone marrow of NOD/SCID mice. Exp Hematol 39(6):686-696. e684

    CAS  PubMed  Google Scholar 

  112. Li Q, Guo Y, Chen F, Liu J, Jin P (2016) Stromal cell-derived factor-1 promotes human adipose tissue-derived stem cell survival and chronic wound healing. Exp Ther Med 12(1):45–50. doi:https://doi.org/10.3892/etm.2016.3309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This survey was supported by the Birjand University of Medical Sciences.

Funding

No funding was received.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed equally to this study.

Corresponding author

Correspondence to Mohammad Fereidouni.

Ethics declarations

Conflict of interest

Farzad Sadri declares that he has no conflict of interest. Zohreh Rezaei declares that she has no conflict of interest. Mohammad Fereidouni declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadri, F., Rezaei, Z. & Fereidouni, M. The significance of the SDF-1/CXCR4 signaling pathway in the normal development. Mol Biol Rep 49, 3307–3320 (2022). https://doi.org/10.1007/s11033-021-07069-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-07069-3

Keywords

Navigation