Skip to main content

Advertisement

Log in

F-box only protein 9 and its role in cancer

  • Mini Review Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The F-box proteins (FBP), substrate recognition subunit of the SCF (Skp1-Cullin1-F-box protein complex) E3 ligase, play important roles in the ubiquitylation and subsequent degradation of the target proteins from several cellular processes. Disorders of F-box protein-mediated proteolysis lead to human malignancies. FBP plays an important role in many cellular processes, including cell proliferation, cell cycle, apoptosis, migration, invasion, and metastasis, suggesting that it can be associated with tumorigenesis, cancer development and progression. However, the expression and function of FBXO9 (F-box only protein 9) differ in various types of human cancer. Due to the ability to regulate the stability and activity of oncogenes and tumor-suppressor genes, and the physiological functions of many of the F-box proteins remain subtle, further genetic and mechanistic studies will elaborate and help define FBXO9’s role. Targeting F-box protein or F-box protein signaling pathways could be an effective strategy for preventing or treating human cancer. This review is presented to summarize the part of FBXO9 in different types of human cancer and its regulation mechanism, and to pave the way to design FBXO9-targeting anticancer therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Bett JS (2016) Proteostasis regulation by the ubiquitin system. Essays Biochem 60(2):143–151

    Article  PubMed  Google Scholar 

  2. Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479

    Article  CAS  Google Scholar 

  3. Varshavsky A (2012) The ubiquitin system, an immense realm. Annu Rev Biochem 81:167–176

    Article  CAS  PubMed  Google Scholar 

  4. Ciechanover, A., A. Orian, and A.L. Schwartz, Ubiquitin-mediated proteolysis: biological regulation via destruction. BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology, 2000. 22(5): p. 442–451.

  5. Smalle J, Vierstra RD (2004) The ubiquitin 26S proteasome proteolytic pathway. Annu Rev Plant Biol 55:555–590

    Article  CAS  PubMed  Google Scholar 

  6. Li W et al (2008) Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle’s dynamics and signaling. PLoS One 3(1):e1487

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bai C et al (1996) SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell 86(2):263–274

    Article  CAS  PubMed  Google Scholar 

  8. Deshaies RJ, Joazeiro CAP (2009) RING domain E3 ubiquitin ligases. Annu Rev Biochem 78:399–434

    Article  CAS  PubMed  Google Scholar 

  9. Frescas D, Pagano M (2008) Deregulated proteolysis by the F-box proteins SKP2 and beta-TrCP: tipping the scales of cancer. Nat Rev Cancer 8(6):438–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang Z et al (2014) Roles of F-box proteins in cancer. Nat Rev Cancer 14(4):233–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gong J, Lv L, Huo J (2014) Roles of F-box proteins in human digestive system tumors (review). Int J Oncol 45(6):2199–2207

    Article  CAS  PubMed  Google Scholar 

  12. Zheng N et al (2016) Recent advances in SCF ubiquitin ligase complex: clinical implications. Biochem Biophys Acta 1866(1):12–22

    CAS  PubMed  Google Scholar 

  13. Cenciarelli C et al (1999) Identification of a family of human F-box proteins. Current biology: CB 9(20):1177–1179

    Article  CAS  PubMed  Google Scholar 

  14. Crawford LJ, Irvine AE (2013) Targeting the ubiquitin proteasome system in haematological malignancies. Blood Rev 27(6):297–304

    Article  CAS  PubMed  Google Scholar 

  15. Fidler IJ (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3(6):453–458

    Article  CAS  PubMed  Google Scholar 

  16. Ilyin GP et al (2002) A new subfamily of structurally related human F-box proteins. Gene 296(1–2):11–20

    Article  CAS  PubMed  Google Scholar 

  17. Yoshida Y et al (2003) Fbs2 is a new member of the E3 ubiquitin ligase family that recognizes sugar chains. J Biol Chem 278(44):43877–43884

    Article  CAS  PubMed  Google Scholar 

  18. Díaz VM, de Herreros AG (2016) F-box proteins: keeping the epithelial-to-mesenchymal transition (EMT) in check. Semin Cancer Biol 36:71–79

    Article  PubMed  Google Scholar 

  19. Heo J, Eki R, Abbas T (2016) Deregulation of F-box proteins and its consequence on cancer development, progression and metastasis. Semin Cancer Biol 36:33–51

    Article  CAS  PubMed  Google Scholar 

  20. Randle SJ, Laman H (2016) F-box protein interactions with the hallmark pathways in cancer. Semin Cancer Biol 36:3–17

    Article  CAS  PubMed  Google Scholar 

  21. Ferrara F, Schiffer CA (2013) Acute myeloid leukaemia in adults. Lancet (London, England) 381(9865):484–495

    Article  Google Scholar 

  22. Hynes-Smith RW et al (2019) Loss of FBXO9 enhances proteasome activity and promotes aggressiveness in acute myeloid leukemia. Cancers 11(11):1717

    Article  CAS  PubMed Central  Google Scholar 

  23. Lancet, J.E., et al., Overall survival (OS) with CPX-351 versus 7+3 in older adults with newly diagnosed, therapy-related acute myeloid leukemia (tAML): Subgroup analysis of a phase III study. Journal of Clinical Oncology, 2017. 35(15_suppl): 7035–7035.

  24. Stone RM et al (2017) Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation. N Engl J Med 377(5):454–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kipreos, E.T. and M. Pagano, The F-box protein family. Genome Biology, 2000. 1(5): p. REVIEWS3002.

  26. Moran-Crusio K, Reavie LB, Aifantis I (2012) Regulation of hematopoietic stem cell fate by the ubiquitin proteasome system. Trends Immunol 33(7):357–363

    Article  CAS  PubMed  Google Scholar 

  27. Khan, A.Q., et al., F-box proteins in cancer stemness: An emerging prognostic and therapeutic target. Drug Discovery Today, 2021.

  28. Fernández-Sáiz V et al (2013) SCFFbxo9 and CK2 direct the cellular response to growth factor withdrawal via Tel2/Tti1 degradation and promote survival in multiple myeloma. Nat Cell Biol 15(1):72–81

    Article  PubMed  Google Scholar 

  29. Reavie L et al (2013) Regulation of c-Myc ubiquitination controls chronic myelogenous leukemia initiation and progression. Cancer Cell 23(3):362–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vaites LP et al (2011) The Fbx4 tumor suppressor regulates cyclin D1 accumulation and prevents neoplastic transformation. Mol Cell Biol 31(22):4513–4523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen D, Dou QP (2010) The ubiquitin-proteasome system as a prospective molecular target for cancer treatment and prevention. Curr Protein Pept Sci 11(6):459–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lin D et al (2010) Development of metastatic and non-metastatic tumor lines from a patient’s prostate cancer specimen—identification of a small subpopulation with metastatic potential in the primary tumor. Prostate 70(15):1636–1644

    Article  PubMed  Google Scholar 

  33. Kremmidiotis G et al (1998) Localization of human cadherin genes to chromosome regions exhibiting cancer-related loss of heterozygosity. Genomics 49(3):467–471

    Article  CAS  PubMed  Google Scholar 

  34. Whitmore SA et al (1998) Characterization and screening for mutations of the growth arrest-specific 11 (GAS11) and C16orf3 genes at 16q24.3 in breast cancer. Genomics 52(3):325–331

    Article  CAS  PubMed  Google Scholar 

  35. Gupta GP, Massagué J (2006) Cancer Metastasis: Building a Framework. Cell 127(4):679–695

    Article  CAS  PubMed  Google Scholar 

  36. Arora R et al (2004) Heterogeneity of Gleason grade in multifocal adenocarcinoma of the prostate. Cancer 100(11):2362–2366

    Article  PubMed  Google Scholar 

  37. Foulkes WD et al (1993) Frequent loss of heterozygosity on chromosome 6 in human ovarian carcinoma. Br J Cancer 67(3):551–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Phipps AI et al (2012) Temporal trends in incidence and mortality rates for colorectal cancer by tumor location: 1975–2007. Am J Public Health 102(9):1791–1797

    Article  PubMed  PubMed Central  Google Scholar 

  39. Afzal S et al (2011) The association of polymorphisms in 5-fluorouracil metabolism genes with outcome in adjuvant treatment of colorectal cancer. Pharmacogenomics 12(9):1257–1267

    Article  CAS  PubMed  Google Scholar 

  40. Houlston RS et al (2010) Meta-analysis of three genome-wide association studies identifies susceptibility loci for colorectal cancer at 1q41, 3q26.2, 12q13.13 and 20q13.33. Nat Genet 42(11):973–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hutter CM et al (2010) Characterization of the association between 8q24 and colon cancer: gene-environment exploration and meta-analysis. BMC Cancer 10:670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kocarnik JD et al (2010) Characterization of 9p24 risk locus and colorectal adenoma and cancer: gene-environment interaction and meta-analysis. Cancer Epidemiol Biomarkers 19(12):3131–3139

    Article  CAS  Google Scholar 

  43. Peters U et al (2012) Meta-analysis of new genome-wide association studies of colorectal cancer risk. Hum Genet 131(2):217–234

    Article  PubMed  Google Scholar 

  44. Peters U et al (2013) Identification of genetic susceptibility loci for colorectal tumors in a genome-wide meta-analysis. Gastroenterology 144(4):799-807.e24

    Article  CAS  PubMed  Google Scholar 

  45. Phipps AI et al (2012) Association between colorectal cancer susceptibility loci and survival time after diagnosis with colorectal cancer. Gastroenterology 143(1):51-54.e4

    Article  CAS  PubMed  Google Scholar 

  46. Study,C et al (2008) Meta-analysis of genome-wide association data identifies four new susceptibility loci for colorectal cancer. Nat Genet 40(12):1426–1435

    Article  Google Scholar 

  47. Tomlinson, I.P.M., et al., Multiple common susceptibility variants near BMP pathway loci GREM1, BMP4, and BMP2 explain part of the missing heritability of colorectal cancer. PLoS Genet, 2011. 7(6): e1002105.

  48. Curtin K et al (2007) Thymidylate synthase polymorphisms and colon cancer: associations with tumor stage, tumor characteristics and survival. Int J Cancer 120(10):2226–2232

    Article  CAS  PubMed  Google Scholar 

  49. Dominguez I, Sonenshein GE, Seldin DC (2009) Protein kinase CK2 in health and disease: CK2 and its role in Wnt and NF-kappaB signaling: linking development and cancer. Cell Mol Life Sci 66(11–12):1850–1857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Litchfield DW (2003) Protein kinase CK2: structure, regulation and role in cellular decisions of life and death. Biochem J 369(Pt 1):1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Trembley JH et al (2009) Protein kinase CK2 in health and disease: CK2: a key player in cancer biology. Cell Mol Life Sci 66(11–12):1858–1867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Martin JW, Squire JA, Zielenska M (2012) The genetics of osteosarcoma. Sarcoma 2012:627254

    Article  PubMed  PubMed Central  Google Scholar 

  53. Barøy T et al (2014) Reexpression of LSAMP inhibits tumor growth in a preclinical osteosarcoma model. Mol Cancer 13:93

    Article  PubMed  PubMed Central  Google Scholar 

  54. Baruffi MR et al (2003) Chromosomal imbalances detected in primary bone tumors by comparative genomic hybridization and interphase fluorescence in situ hybridization. Genet Mol Biol 26:107–113

    Article  CAS  Google Scholar 

  55. FLETCHER, C., Pathology and genetics of tumors of soft tissue and bone. World Health Organization Classification of Tumors, 2002. 4: 35–46.

  56. Forus A et al (1995) Comparative genomic hybridization analysis of human sarcomas: II Identification of novel amplicons at 6p and 17p in osteosarcomas. Genes Chromos Cancer 14(1):15–21

    Article  CAS  PubMed  Google Scholar 

  57. Kowalska A et al (2008) Sequence based high resolution chromosomal CGH. Cytogenet Genome Res 121(1):1–6

    Article  CAS  PubMed  Google Scholar 

  58. Lau, C.C., et al., Frequent amplification and rearrangement of chromosomal bands 6p12-p21 and 17p11.2 in osteosarcoma. Genes Chromo Cancer, 2004. 39(1): 11–21.

  59. Man T-K et al (2004) Genome-wide array comparative genomic hybridization analysis reveals distinct amplifications in osteosarcoma. BMC Cancer 4:45

    Article  PubMed  PubMed Central  Google Scholar 

  60. Martin JW et al (2010) Analysis of segmental duplications, mouse genome synteny and recurrent cancer-associated amplicons in human chromosome 6p21-p12. Cytogenet Genome Res 128(4):199–213

    Article  CAS  PubMed  Google Scholar 

  61. Martin, J.W., et al., The role of RUNX2 in osteosarcoma oncogenesis. Sarcoma, 2011. 2011: 282745.

  62. Ozaki T et al (2002) Genetic imbalances revealed by comparative genomic hybridization in osteosarcomas. Int J Cancer 102(4):355–365

    Article  CAS  PubMed  Google Scholar 

  63. Sadikovic B et al (2009) Identification of interactive networks of gene expression associated with osteosarcoma oncogenesis by integrated molecular profiling. Hum Mol Genet 18(11):1962–1975

    Article  CAS  PubMed  Google Scholar 

  64. Selvarajah S et al (2008) Genomic signatures of chromosomal instability and osteosarcoma progression detected by high resolution array CGH and interphase FISH. Cytogenet Genome Res 122(1):5–15

    Article  CAS  PubMed  Google Scholar 

  65. Smida J et al (2010) Genomic alterations and allelic imbalances are strong prognostic predictors in osteosarcoma. Clin Cancer Res 16(16):4256–4267

    Article  CAS  PubMed  Google Scholar 

  66. Squire JA et al (2003) High-resolution mapping of amplifications and deletions in pediatric osteosarcoma by use of CGH analysis of cDNA microarrays. Genes Chromosom Cancer 38(3):215–225

    Article  CAS  PubMed  Google Scholar 

  67. Zielenska M et al (2004) High-resolution cDNA microarray CGH mapping of genomic imbalances in osteosarcoma using formalin-fixed paraffin-embedded tissue. Cytogenet Genome Res 107(1–2):77–82

    Article  CAS  PubMed  Google Scholar 

  68. Sadikovic, B., et al., In vitro analysis of integrated global high-resolution DNA methylation profiling with genomic imbalance and gene expression in osteosarcoma. PLoS One, 2008. 3(7): p. e2834.

  69. Walkley CR et al (2008) Conditional mouse osteosarcoma, dependent on p53 loss and potentiated by loss of Rb, mimics the human disease. Genes Dev 22(12):1662–1676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. NISHIO, J., et al., Low-grade central osteosarcoma of the metatarsal bone: a clinicopathological, immunohistochemical, cytogenetic and molecular cytogenetic analysis. Anticancer Res, 2012. 32(12): 5429–5435.

  71. van Dartel, M. and T.J.M. Hulsebos, Amplification and overexpression of genes in 17p11.2 ~ p12 in osteosarcoma. Cancer Genetics and Cytogenetics, 2004. 153(1): p. 77–80.

  72. Chen X et al (2021) Ubiquitination-related miRNA–mRNA interaction is a potential mechanism in the progression of retinoblastoma. Invest Opthalmol Vis Sci 62(10):3

    Article  CAS  Google Scholar 

  73. Donato, V., et al., The TDH-GCN5L1-Fbxo15-KBP axis limits mitochondrial biogenesis in mouse embryonic stem cells. 2017. 19(4): p. 341–351.

  74. Reitsma JM et al (2017) Composition and regulation of the cellular repertoire of SCF ubiquitin ligases. Cell 171(6):1326-1339.e14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Smit JJ, Sixma TK (2014) RBR E3-ligases at work. EMBO Rep 15(2):142–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wiener R et al (2013) E2 ubiquitin-conjugating enzymes regulate the deubiquitinating activity of OTUB1. Nat Struct Mol Biol 20(9):1033–1039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Grabbe C, Husnjak K, Dikic I (2011) The spatial and temporal organization of ubiquitin networks. Nat Rev Mol Cell Biol 12(5):295–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Rape M (2018) Ubiquitylation at the crossroads of development and disease. Nat Rev Mol Cell Biol 19(1):59–70

    Article  CAS  PubMed  Google Scholar 

  79. Thompson, L.L., et al., Reduced SKP1 Expression Induces Chromosome Instability through Aberrant Cyclin E1 Protein Turnover. Cancers (Basel), 2020. 12(3).

  80. Thompson, L.L., et al., Evolving Therapeutic Strategies to Exploit Chromosome Instability in Cancer. 2017. 9(11).

  81. Chen S et al (2021) Exosomes derived from retinoblastoma cells enhance tumour deterioration by infiltrating the microenvironment. Oncol Rep 45(1):278–290

    Article  PubMed  Google Scholar 

  82. Hussain M et al (2016) Skp 1: Implications in cancer and SCF-oriented anti-cancer drug discovery. Pharmacol Res 111:34–42

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 31900913, 82020108030, U21A20416, 81773562, 81703326, 81430085, and 81973177) and National Key Research Program (No. 2018YFE0195100 and 2016YFA0501800).

Author information

Authors and Affiliations

Authors

Contributions

Prof HL and JD conceived and designed the project; SH, JD, XM, SC, JL, AC and HL performed research, analyzed data and wrote the first draft. Prof HL and JD supervised the research and finalized the paper. All authors discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to Jianshu Dong.

Ethics declarations

Conflict of interest

There is no conflict of interest to declare.

Ethical statement

Not applicable (This is a literature summary and review study. No ethical issue with human cell or tissue or other materials of human origin is involved.)

Consent for publication

All authors consent for this submission.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, S., Dong, J., Ma, X. et al. F-box only protein 9 and its role in cancer. Mol Biol Rep 49, 1537–1544 (2022). https://doi.org/10.1007/s11033-021-07057-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-07057-7

Keywords

Navigation