Skip to main content
Log in

Structural and functional changes in the kidney caused by adverse fetal and neonatal environments

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Health and disease risk in the adulthood are known to be affected by the early developmental environment. Kidney diseases are one of these diseases, and kidneys are altered both structurally and functionally by adverse pre- and perinatal events. The most known structural change is low nephron number seen in subjects born low birth weight and/or preterm. In various animal models of intrauterine growth restriction (IUGR), one of the causes of low birth weight, the mechanism of low nephron number was investigated. While apoptosis of metanephric mesenchyme has been suggested to be the cause, I showed that suppression of ureteric branching, global DNA methylation, and caspase-3 activity also contributes to the mechanism. Other structural changes caused by adverse fetal and neonatal environments include peritubular and glomerular capillary rarefaction and low podocyte endowment. These are aggravated by postnatal development of focal glomerulosclerosis and tubulointerstitial fibrosis that result from low nephron number. Functional changes can be seen in tubules, endothelium, renin-angiotensin system, sympathetic nervous system, oxidative stress, and others. As an example, I reported that aggravated nitrosative stress in a rat IUGR model resulted in more severe tubular necrosis and tubulointerstitial fibrosis after unilateral ureteral obstruction. The mechanism of various functional changes needs to be clarified but may be explained by epigenetic modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Barker DJ (1997) Maternal nutrition, fetal nutrition, and disease in later life. Nutrition 13:807–813. https://doi.org/10.1016/s0899-9007(97)00193-7

    Article  CAS  PubMed  Google Scholar 

  2. Zidar N, Cavić MA, Kenda RB, Koselj M, Ferluga D (1998) Effect of intrauterine growth retardation on the clinical course and prognosis of IgA glomerulonephritis in children. Nephron 79:28–32. https://doi.org/10.1159/000044987

    Article  CAS  PubMed  Google Scholar 

  3. Zidar N, Avgustin Cavić M, Kenda RB, Ferluga D (1998) Unfavorable course of minimal change nephrotic syndrome in children with intrauterine growth retardation. Kidney Int 54:1320–1323. https://doi.org/10.1046/j.1523-1755.1998.00121.x

    Article  CAS  PubMed  Google Scholar 

  4. Rossing P, Tarnow L, Nielsen FS, Hansen BV, Brenner BM, Parving HH (1995) Low birth weight. A risk factor for development of diabetic nephropathy? Diabetes 44:1405–1407. https://doi.org/10.2337/diab.1444.1412.1405

    Article  CAS  PubMed  Google Scholar 

  5. Duncan RC, Bass PS, Garrett PJ, Dathan JR (1994) Weight at birth and other factors influencing progression of idiopathic membranous nephropathy. Nephrol Dial Transplant 9:875

    CAS  PubMed  Google Scholar 

  6. Hellström M, Hessel H, Jacobsson B, Jodal U, Niklasson A, Wennerström M, Hellström A (2001) Association between urinary tract infection, renal damage and birth size. Acta Paediatr 90:628–631

    Article  Google Scholar 

  7. Hughson M, Farris AB 3rd, Douglas-Denton R, Hoy WE, Bertram JF (2003) Glomerular number and size in autopsy kidneys: the relationship to birth weight. Kidney Int 63:2113–2122. https://doi.org/10.1046/j.1523-1755.2003.00018.x

    Article  PubMed  Google Scholar 

  8. Hughson MD, Puelles VG, Hoy WE, Douglas-Denton RN, Mott SA, Bertram JF (2014) Hypertension, glomerular hypertrophy and nephrosclerosis: the effect of race. Nephrol Dial Transplant 29:1399–1409. https://doi.org/10.1093/ndt/gft1480

    Article  PubMed  Google Scholar 

  9. Orskov B, Christensen KB, Feldt-Rasmussen B, Strandgaard S (2012) Low birth weight is associated with earlier onset of end-stage renal disease in Danish patients with autosomal dominant polycystic kidney disease. Kidney Int 81:919–924. https://doi.org/10.1038/ki.2011.459

    Article  CAS  PubMed  Google Scholar 

  10. Rajan T, Barbour SJ, White CT, Levin A (2011) Low birth weight and nephron mass and their role in the progression of chronic kidney disease: a case report on identical twins with Alport disease. Nephrol Dial Transplant 26:4136–4139. https://doi.org/10.1093/ndt/gfr252

    Article  PubMed  Google Scholar 

  11. Melo BF, Aguiar MB, Bouzada MC, Aguiar RL, Pereira AK, Paixão GM, Linhares MC, Valerio FC, Simões ESAC, Oliveira EA (2012) Early risk factors for neonatal mortality in CAKUT: analysis of 524 affected newborns. Pediatr Nephrol 27:965–972. https://doi.org/10.1007/s00467-012-2107-y

    Article  PubMed  Google Scholar 

  12. Plank C, Ostreicher I, Hartner A, Marek I, Struwe FG, Amann K, Hilgers KF, Rascher W, Dötsch J (2006) Intrauterine growth retardation aggravates the course of acute mesangioproliferative glomerulonephritis in the rat. Kidney Int 70:1974–1982. https://doi.org/10.1038/sj.ki.5001966

    Article  CAS  PubMed  Google Scholar 

  13. Ojeda NB (2011) Low birth weight increases susceptibility to renal injury in a rat model of mild ischemia-reperfusion. Am J Physiol Renal Physiol 301:F420-426. https://doi.org/10.1152/ajprenal.00045.2011

    Article  CAS  PubMed  Google Scholar 

  14. Awazu M, Abe T, Hashiguchi A, Hida M (2019) Maternal undernutrition aggravates renal tubular necrosis and interstitial fibrosis after unilateral ureteral obstruction in male rat offspring. PLoS ONE 14:e0221686. https://doi.org/10.1371/journal.pone.0221686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Newsome AD, Davis GK, Adah ON, Ojeda NB, Alexander BT (2019) Renal injury after uninephrectomy in male and female intrauterine growth-restricted aged rats. PLoS ONE 14:e0213404. https://doi.org/10.1371/journal.pone.0213404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cobb MB, Wu W, Attipoe EM, Johnson AC, Garrett MR (2021) Nephron-deficient HSRA rats exhibit renal injury with age but have limited renal damage from streptozotocin-induced hyperglycemia. Am J Physiol Renal Physiol 320:F1093–F1105. https://doi.org/10.1152/ajprenal.00487.02020

    Article  CAS  PubMed  Google Scholar 

  17. White SL, Perkovic V, Cass A, Chang CL, Poulter NR, Spector T, Haysom L, Craig JC, Salmi IA, Chadban SJ, Huxley RR (2009) Is low birth weight an antecedent of CKD in later life? A systematic review of observational studies. Am J Kidney Dis 54:248–261. https://doi.org/10.1053/j.ajkd.2008.1012.1042

    Article  PubMed  Google Scholar 

  18. Vikse BE, Irgens LM, Leivestad T, Hallan S, Iversen BM (2008) Low birth weight increases risk for end-stage renal disease. J Am Soc Nephrol 19:151–157. https://doi.org/10.1681/ASN.2007020252

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hodgin JB, Rasoulpour M, Markowitz GS, D’Agati VD (2009) Very low birth weight is a risk factor for secondary focal segmental glomerulosclerosis. Clin J Am Soc Nephrol 4:71–76. https://doi.org/10.2215/CJN.01700408

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hsu CW, Yamamoto KT, Henry RK, De Roos AJ, Flynn JT (2014) Prenatal risk factors for childhood CKD. J Am Soc Nephrol 25:2105–2111. https://doi.org/10.1681/ASN.2013060582

    Article  PubMed  PubMed Central  Google Scholar 

  21. Schachtner T, Reinke P (2016) Estimated nephron number of the remaining donor kidney: impact on living kidney donor outcomes. Nephrol Dial Transplant 31:1523–1530. https://doi.org/10.1093/ndt/gfv1458

    Article  PubMed  Google Scholar 

  22. Wu Y, Wang H, Pei J, Jiang X, Tang J (2021) Acute kidney injury in premature and low birth weight neonates: a systematic review and meta-analysis. Pediatr Nephrol 16:021–05251

    Google Scholar 

  23. Carmody JB, Swanson JR, Rhone ET, Charlton JR (2014) Recognition and reporting of AKI in very low birth weight infants. Clin J Am Soc Nephrol 9:2036–2043. https://doi.org/10.2215/CJN.05190514

    Article  PubMed  PubMed Central  Google Scholar 

  24. Welham SJ, Wade A, Woolf AS (2002) Protein restriction in pregnancy is associated with increased apoptosis of mesenchymal cells at the start of rat metanephrogenesis. Kidney Int 61:1231–1242

    Article  CAS  Google Scholar 

  25. Awazu M, Hida M (2015) Maternal nutrient restriction inhibits ureteric bud branching but does not affect the duration of nephrogenesis in rats. Pediatr Res 77:633–639. https://doi.org/10.1038/pr.2015.24

    Article  PubMed  Google Scholar 

  26. Cebrian C, Asai N, D’Agati V, Costantini F (2014) The number of fetal nephron progenitor cells limits ureteric branching and adult nephron endowment. Cell Rep 7:127–137. https://doi.org/10.1016/j.celrep.2014.02.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Barnett C, Nnoli O, Abdulmahdi W, Nesi L, Shen M, Zullo JA, Payne DL, Azar T, Dwivedi P, Syed K, Gromis J, Lipphardt M, Jules E, Maranda EL, Patel A, Rabadi MM, Ratliff BB (2017) Low birth weight is associated with impaired murine kidney development and function. Pediatr Res 82:340–348. https://doi.org/10.1038/pr.2017.53

    Article  PubMed  Google Scholar 

  28. Little MH (2015) The life cycle of the nephron progenitor. Dev Cell 35:5–6. https://doi.org/10.1016/j.devcel.2015.09.023

    Article  CAS  PubMed  Google Scholar 

  29. Schuh MP, Alkhudairy L, Potter A, Potter SS, Chetal K, Thakkar K, Salomonis N, Kopan R (2021) The rhesus macaque serves as a model for human lateral branch nephrogenesis. J Am Soc Nephrol 32:1097–1112. https://doi.org/10.1681/ASN.2020101459

    Article  CAS  PubMed  Google Scholar 

  30. Awazu M, Hida M (2020) Folic acid supplementation alleviates reduced ureteric branching, nephrogenesis, and global DNA methylation induced by maternal nutrient restriction in rat embryonic kidney. PLoS ONE 15:e0230289. https://doi.org/10.1371/journal.pone.0230289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li SY, Park J, Guan Y, Chung K, Shrestha R, Palmer MB, Susztak K (2019) DNMT1 in Six2 progenitor cells is essential for transposable element silencing and kidney development. J Am Soc Nephrol 30:594–609. https://doi.org/10.1681/ASN.2018070687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wanner N, Vornweg J, Combes A, Wilson S, Plappert J, Rafflenbeul G, Puelles VG, Rahman RU, Liwinski T, Lindner S, Grahammer F, Kretz O, Wlodek ME, Romano T, Moritz KM, Boerries M, Busch H, Bonn S, Little MH, Bechtel-Walz W, Huber TB (2019) DNA methyltransferase 1 controls nephron progenitor cell renewal and differentiation. J Am Soc Nephrol 30:63–78. https://doi.org/10.1681/ASN.2018070736

    Article  CAS  PubMed  Google Scholar 

  33. Makayes Y, Resnick E, Hinden L, Aizenshtein E, Shlomi T, Kopan R, Nechama M, Volovelsky O (2021) Increasing mTORC1 pathway activity or methionine supplementation during pregnancy reverses the negative effect of maternal malnutrition on the developing kidney. J Am Soc Nephrol 32:1898–1912. https://doi.org/10.1681/ASN.2020091321

    Article  CAS  PubMed  Google Scholar 

  34. Awazu M (2017) Mitogen-activated protein kinases in the development of normal and diseased kidneys. Child Kidney Dis 21:1–7. https://doi.org/10.3339/jkspn.2017.21.1.1

    Article  Google Scholar 

  35. Araki T, Saruta T, Okano H, Miura M (1999) Caspase activity is required for nephrogenesis in the developing mouse metanephros. Exp Cell Res 248:423–429

    Article  CAS  Google Scholar 

  36. Awazu M, Yamaguchi Y, Nagata M, Miura M, Hida M (2021) Caspase-3 regulates ureteric branching in mice via cell migration. Biochem Biophys Res Commun 559:28–34 https://doi.org/10.1016/j.bbrc.2021.04.081

  37. Rodríguez MM, Gómez AH, Abitbol CL, Chandar JJ, Duara S, Zilleruelo GE (2004) Histomorphometric analysis of postnatal glomerulogenesis in extremely preterm infants. Pediatr Dev Pathol 7:17–25. https://doi.org/10.1007/s10024-003-3029-2

    Article  PubMed  Google Scholar 

  38. Chevalier RL (2020) Bioenergetic evolution explains prevalence of low nephron number at birth: risk factor for CKD. Kidney 360 (1):863–879 https://doi.org/10.34067/KID.0002012020

  39. Gubhaju L, Sutherland MR, Yoder BA, Zulli A, Bertram JF, Black MJ (2009) Is nephrogenesis affected by preterm birth? Studies in a non-human primate model. Am J Physiol Renal Physiol 297:F1668-1677. https://doi.org/10.1152/ajprenal.00163.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Norman M (2008) Low birth weight and the developing vascular tree: a systematic review. Acta Paediatr 97:1165–1172. https://doi.org/10.1111/j.1651-2227.2008.00904.x

    Article  PubMed  Google Scholar 

  41. Asada N, Tsukahara T, Furuhata M, Matsuoka D, Noda S, Naganuma K, Hashiguchi A, Awazu M (2017) Polycythemia, capillary rarefaction, and focal glomerulosclerosis in two adolescents born extremely low birth weight and premature. Pediatr Nephrol 32:1275–1278. https://doi.org/10.1007/s00467-017-3654-z

    Article  PubMed  Google Scholar 

  42. Dimke H, Sparks MA, Thomson BR, Frische S, Coffman TM, Quaggin SE (2015) Tubulovascular cross-talk by vascular endothelial growth factor a maintains peritubular microvasculature in kidney. J Am Soc Nephrol 26:1027–1038. https://doi.org/10.1681/ASN.2014010060

    Article  CAS  PubMed  Google Scholar 

  43. Lloyd LJ, Foster T, Rhodes P, Rhind SM, Gardner DS (2012) Protein-energy malnutrition during early gestation in sheep blunts fetal renal vascular and nephron development and compromises adult renal function. J Physiol 590:377–393. https://doi.org/10.1113/jphysiol.2011.220186

    Article  CAS  PubMed  Google Scholar 

  44. Sutherland MR, Ryan D, Dahl MJ, Albertine KH, Black MJ (2016) Effects of preterm birth and ventilation on glomerular capillary growth in the neonatal lamb kidney. J Hypertens 34:1988–1997. https://doi.org/10.1097/HJH.0000000000001028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ikezumi Y, Suzuki T, Karasawa T, Yamada T, Hasegawa H, Nishimura H, Uchiyama M (2013) Low birthweight and premature birth are risk factors for podocytopenia and focal segmental glomerulosclerosis [Research Support, Non-U.S. Gov’t]. Am J Nephrol 38:149–157. https://doi.org/10.1159/000353898

    Article  PubMed  Google Scholar 

  46. Ding F, Gao Q, Tian X, Mo J, Zheng J (2021) Increasing urinary podocyte mRNA excretion and progressive podocyte loss in kidney contribute to the high risk of long-term renal disease caused by preterm birth. Sci Rep 11:20650. https://doi.org/10.1038/s41598-021-00130-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gonçalves GD, Walton SL, Gazzard SE, van der Wolde J, Mathias PCF, Moritz KM, Cullen-McEwen LA, Bertram JF (2020) Maternal hypoxia developmentally programs low podocyte endowment in male, but not female offspring. Anat Rec (Hoboken) 303:2668–2678. https://doi.org/10.1002/ar.24369

    Article  CAS  Google Scholar 

  48. Cullen-McEwen LA, van der Wolde J, Haruhara K, Tribolet L, Dowling JP, Bertram MG, De Matteo R, Haas F, Czogalla J, Okabayashi Y, Armitage JA, Black MJ, Hoy WE, Puelles VG, Bertram JF (2021) Podocyte endowment and the impact of adult body size on kidney health. Am J Physiol Renal Physiol 321:F322–F334. https://doi.org/10.1152/ajprenal.00029.2021

    Article  CAS  PubMed  Google Scholar 

  49. Menendez-Castro C, Nitz D, Cordasic N, Jordan J, Bäuerle T, Fahlbusch FB, Rascher W, Hilgers KF, Hartner A (2018) Neonatal nephron loss during active nephrogenesis - detrimental impact with long-term renal consequences. Sci Rep 8:4542. https://doi.org/10.1038/s41598-018-22733-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chen CM, Chou HC (2009) Effects of maternal undernutrition on glomerular ultrastructure in rat offspring. Pediatr Neonatol 50:50–53. https://doi.org/10.1016/S1875-9572(09)60032-2

    Article  PubMed  Google Scholar 

  51. Rodríguez-Soriano J, Aguirre M, Oliveros R, Vallo A (2005) Long-term renal follow-up of extremely low birth weight infants. Pediatr Nephrol 20:579–584. https://doi.org/10.1007/s00467-005-1828-6

    Article  PubMed  Google Scholar 

  52. Awazu M, Arai M, Ohashi S, Takahashi H, Sekine T, Ikeda K (2017) Tubular dysfunction mimicking Dent’s disease in 2 infants born with extremely low birth weight. Case Rep Nephrol Dial 7:13–17. https://doi.org/10.1159/000455828

    Article  PubMed  PubMed Central  Google Scholar 

  53. Prieur B, Cordeau-Lossouarn L, Rotig A, Bismuth J, Geloso JP, Delaval E (1995) Perinatal maturation of rat kidney mitochondria. Biochem J 305:675–680. https://doi.org/10.1042/bj3050675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ashton N, Al-Wasil SH, Bond H, Berry JL, Denton J, Freemont AJ (2007) The effect of a low-protein diet in pregnancy on offspring renal calcium handling. Am J Physiol Regul Integr Comp Physiol 293:R759-765. https://doi.org/10.1152/ajpregu.00523.2006

    Article  CAS  PubMed  Google Scholar 

  55. Manning J, Beutler K, Knepper MA, Vehaskari VM (2002) Upregulation of renal BSC1 and TSC in prenatally programmed hypertension. Am J Physiol Renal Physiol 283:F202-206. https://doi.org/10.1152/ajprenal.00358.2001

    Article  CAS  PubMed  Google Scholar 

  56. Bertram C, Trowern AR, Copin N, Jackson AA, Whorwood CB (2001) The maternal diet during pregnancy programs altered expression of the glucocorticoid receptor and type 2 11ß-hydroxysteroid dehydrogenase: potential molecular mechanisms underlying the programming of hypertension in utero. Endocrinology 142:2841–2853. https://doi.org/10.1210/endo.142.7.8238

    Article  CAS  PubMed  Google Scholar 

  57. Guo Y, Lu Y, Wang J, Zhu L, Liu X (2020) Dysregulated ion channels and transporters activate endoplasmic reticulum stress in rat kidney of fetal growth restriction. Life Sci 259:118276 https://doi.org/10.1016/j.lfs.2020.118276.

  58. Abdulmahdi W, Rabadi MM, Jules E, Marghani Y, Marji N, Leung J, Zhang F, Siani A, Siskind T, Vedovino K, Chowdhury N, Sekulic M, Ratliff BB (2018) Kidney dysfunction in the low-birth weight murine adult: implications of oxidative stress. Am J Physiol Renal Physiol 315:F583–F594. https://doi.org/10.1152/ajprenal.00164.2018

    Article  CAS  PubMed  Google Scholar 

  59. Nishizaki N, Hirano D, Nishizaki Y, Fujinaga S, Nagata S, Ohtomo Y, Kaneko K, Shimizu T (2014) Increased urinary angiotensinogen is an effective marker of chronic renal impairment in very low birth weight childre. Clin Exp Nephrol 18:642–648. https://doi.org/10.1007/s10157-013-0896-3

    Article  CAS  PubMed  Google Scholar 

  60. Grigore D, Ojeda NB, Robertson EB, Dawson AS, Huffman CA, Bourassa EA, Speth RC, Brosnihan KB, Alexander BT (2007) Placental insufficiency results in temporal alterations in the renin angiotensin system in male hypertensive growth restricted offspring. Am J Physiol Regul Integr Comp Physiol 293:R804–R811. https://doi.org/10.1152/ajpregu.00725.2006

    Article  CAS  PubMed  Google Scholar 

  61. Woods LL, Ingelfinger JR, Nyengaard JR, Rasch R (2001) Maternal protein restriction suppresses the newborn renin-angiotensin system and programs adult hypertension in rats. Pediatr Res 49:460–467. https://doi.org/10.1203/00006450-200104000-00005

    Article  CAS  PubMed  Google Scholar 

  62. Alwasel SH, Kaleem I, Sahajpal V, Ashton N (2010) Maternal protein restriction reduces angiotensin II AT(1) and AT(2) receptor expression in the fetal rat kidney. Kidney Blood Press Res 33:251–259. https://doi.org/10.1159/000317739

    Article  CAS  PubMed  Google Scholar 

  63. Zohdi V, Moritz KM, Bubb KJ, Cock ML, Wreford N, Harding R, Black MJ (2007) Nephrogenesis and the renal renin-angiotensin system in fetal sheep: effects of intrauterine growth restriction during late gestation. Am J Physiol Regul Integr Comp Physiol 293:R1267-1273. https://doi.org/10.1152/ajpregu.00119.2007

    Article  CAS  Google Scholar 

  64. Luzardo R, Silva PA, Einicker-Lamas M, Ortiz-Costa S, do Carmo Mda G, Vieira-Filho LD, Paixão AD, Lara LS, Vieyra A (2011) Metabolic programming during lactation stimulates renal Na+ transport in the adult offspring due to an early impact on local angiotensin II pathways. PLoS ONE 6:e21232. https://doi.org/10.1371/journal.pone.0021232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sahajpal V, Ashton N (2003) Renal function and angiotensin AT1 receptor expression in young rats following intrauterine exposure to a maternal low-protein diet. Clin Sci (London) 104:607–614. https://doi.org/10.1042/CS20020355

    Article  CAS  Google Scholar 

  66. Kett MM, Denton KM (2011) Renal programming: cause for concern? Am J Physiol Regul Integr Comp Physiol 300:R791-803. https://doi.org/10.1152/ajpregu.00791.2010

    Article  CAS  PubMed  Google Scholar 

  67. Ojeda NB, Johnson WR, Dwyer TM, Alexander BT (2007) Early renal denervation prevents development of hypertension in growth-restricted offspring. Clin Exp Pharmacol Physiol 34:1212–1216. https://doi.org/10.1111/j.1440-1681.2007.04754.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Alexander BT, Hendon AE, Ferril G, Dwyer TM (2005) Renal denervation abolishes hypertension in low-birth-weight offspring from pregnant rats with reduced uterine perfusion. Hypertension 45:754–758. https://doi.org/10.1161/01.HYP.0000153319.20340.2a

    Article  CAS  PubMed  Google Scholar 

  69. Intapad S, Tull FL, Brown AD, Dasinger JH, Ojeda NB, Fahling JM, Alexander BT (2013) Renal denervation abolishes the age-dependent increase in blood pressure in female intrauterine growth-restricted rats at 12 months of age. Hypertension 61:828–834. https://doi.org/10.1161/HYPERTENSIONAHA.111.00645

    Article  CAS  PubMed  Google Scholar 

  70. Dagan A, Kwon HM, Dwarakanath V, Baum M (2008) Effect of renal denervation on prenatal programming of hypertension and renal tubular transporter abundance. Am J Physiol Renal Physiol 295:F29-34. https://doi.org/10.1152/ajprenal.00123.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tang JM, Shi N, Dong K, Brown SA, Coleman AE, Boegehold MA, Chen SY (2018) Response gene to complement 32 maintains blood pressure homeostasis by regulating α-adrenergic receptor expression. Circ Res 123:1080–1090. https://doi.org/10.1161/CIRCRESAHA.118.313266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Rodríguez-Rodríguez P, Ramiro-Cortijo D, Reyes-Hernández CG, López de Pablo AL, González MC, Arribas SM (2018) Implication of oxidative stress in fetal programming of cardiovascular disease. Front Physiol 9:602 https://doi.org/10.3389/fphys.2018.00602

  73. Stewart T, Jung FF, Manning J, Vehaskari VM (2005) Kidney immune cell infiltration and oxidative stress contribute to prenatally programmed hypertension. Kidney Int 68:2180–2188. https://doi.org/10.1111/j.1523-1755.2005.00674.x

    Article  CAS  PubMed  Google Scholar 

  74. Franco Mdo C, Arruda RM, Dantas AP, Kawamoto EM, Fortes ZB, Scavone C, Carvalho MH, Tostes RC, Nigro D (2002) Intrauterine undernutrition: expression and activity of the endothelial nitric oxide synthase in male and female adult offspring. Cardiovasc Res 56:145–153. https://doi.org/10.1016/s0008-6363(02)00508-4

    Article  PubMed  Google Scholar 

  75. Rozance PJ, Seedorf GJ, Brown A, Roe G, O’Meara MC, Gien J, Tang JR, Abman SH (2011) Intrauterine growth restriction decreases pulmonary alveolar and vessel growth and causes pulmonary artery endothelial cell dysfunction in vitro in fetal sheep. Am J Physiol Lung Cell Mol Physiol 301:L860-871. https://doi.org/10.1152/ajplung.00197.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Guo H, Xu D, Kuroki M, Lu Z, Xu X, Geurts A, Osborn JW, Chen Y (2020) Kidney failure, arterial hypertension and left ventricular hypertrophy in rats with loss of function mutation of SOD3. Free Radic Biol Med 152:787–796 https://doi.org/10.1016/j.freeradbiomed.2020.01.023

  77. Sah SK, Agrahari G, Kim TY (2020) Insights into superoxide dismutase 3 in regulating biological and functional properties of mesenchymal stem cells. Cell Biosci 10:22 https://doi.org/10.1186/s13578-020-00386-3

  78. Grilo LF, Tocantins C, Diniz MS, Gomes RM, Oliveira PJ, Matafome P, Pereira SP (2021) Metabolic disease programming: from mitochondria to epigenetics, glucocorticoid signalling and beyond. Eur J Clin Invest 51:e13625. https://doi.org/10.11111/eci.13625

    Article  CAS  PubMed  Google Scholar 

  79. Pereira SP, Oliveira PJ, Tavares LC, Moreno AJ, Cox LA, Nathanielsz PW, Nijland MJ (2015) Effects of moderate global maternal nutrient reduction on fetal baboon renal mitochondrial gene expression at 0.9 gestation. Am J Physiol Renal Physiol 308:F1217-1228. https://doi.org/10.1152/ajprenal.00419.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Stangenberg S, Chen H, Wong MG, Pollock CA, Saad S (2015) Fetal programming of chronic kidney disease: the role of maternal smoking, mitochondrial dysfunction, and epigenetic modfification. Am J Physiol Renal Physiol 308:F1189-1196. https://doi.org/10.1152/ajprenal.00638.2014

    Article  CAS  PubMed  Google Scholar 

  81. Woodman AG, Mah R, Keddie D, Noble RMN, Panahi S, Gragasin FS, Lemieux H, Bourque SL (2018) Prenatal iron deficiency causes sex-dependent mitochondrial dysfunction and oxidative stress in fetal rat kidneys and liver. FASEB J 32:3254–3263. https://doi.org/10.1096/fj.201701080R

    Article  CAS  PubMed  Google Scholar 

  82. Watanabe IKM, Jara ZP, Volpini RA, Franco MDC, Jung FF, Casarini DE (2018) Up-regulation of renal renin-angiotensin system and inflammatory mechanisms in the prenatal programming by low-protein diet: beneficial effect of the post-weaning losartan treatment. J Dev Orig Health Dis 9:530–535. https://doi.org/10.1017/S2040174418000296

    Article  CAS  PubMed  Google Scholar 

  83. Ruiz L, Moles L, Gueimonde M, Rodriguez JM (2016) Perinatal microbiomes’ influence on preterm birth and preterms’ health: Influencing factors and modulation strategies. J Pediatr Gastroenterol Nutr 63:e193–e203. https://doi.org/10.1097/MPG.0000000000001196

    Article  PubMed  Google Scholar 

  84. Cosola C, Rocchetti MT, Cupisti A, Gesualdo L (2018) Microbiota metabolites: pivotal players of cardiovascular damage in chronic kidney disease. Pharmacol Res 130:132–142 https://doi.org/10.1016/j.phrs.2018.03.003

  85. Tsuji S, Akagawa S, Akagawa Y, Yamaguchi T, Kino J, Yamanouchi S, Kimata T, Hashiyada M, Akane A, Kaneko K (2021) Idiopathic nephrotic syndrome in children: role of regulatory T cells and gut microbiota. Pediatr Res 89:1185–1191. https://doi.org/10.1038/s41390-020-1022-3

    Article  CAS  PubMed  Google Scholar 

  86. Marques FZ, Mackay CR, Kaye DM (2018) Beyond gut feelings: how the gut microbiota regulates blood pressure. Nat Rev Cardiol 15:20–32. https://doi.org/10.1038/nrcardio.2017.120

    Article  PubMed  Google Scholar 

Download references

Funding

No honorarium, grant, or other form of payment was given to the author to produce the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Midori Awazu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human and animal rights

This article does not contain any studies with human participants of animals performed by the author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awazu, M. Structural and functional changes in the kidney caused by adverse fetal and neonatal environments. Mol Biol Rep 49, 2335–2344 (2022). https://doi.org/10.1007/s11033-021-06967-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06967-w

Keywords

Navigation