Skip to main content

Advertisement

Log in

Dietary uptake of Salvia macilenta extract improves Nrf2 antioxidant signaling pathway and diminishes inflammation and apoptosis in amyloid beta-induced rats

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Studies showed the protective role of Salvia in traditional medicine against neurodegenerative diseases. Salvia macilenta is one of the potent antioxidant herbs among Salvia species against oxidative stress. In the current study, the effect of oral administration of S. macilenta in the antioxidant, anti-inflammatory activities of Aβ-injected male albino Wistar rats was determined.

Methods

Rats were received S. macilenta (50 mg/kg/day) orally, for ten successive days and then some of them received Aβ (10 ng/µl) in their hippocampus (CA1 region). Proteins involved in antioxidant defense system and inflammatory signaling pathways in the hippocampus and prefrontal cortex were evaluated using Western blotting technique. To study apoptosis, Western blotting technique and histological staining were used. Catalase activity, glutathione peroxidase (GSH) and nitric oxide levels were measured.

Results

Results demonstrated that S. macilenta increased Nrf2 protein level and decreased TNFα and IL-6 protein level in Aβ-injected rats compared to the Aβ-injected group in the hippocampus and prefrontal cortex. Histological analysis showed pretreatment with S. macilenta decreased apoptosis levels in the hippocampus and prefrontal cortex, about 41 and 42%, compared to Aβ-injected rats, respectively. This study showed that catalase activity was changed in the S. macilenta + Aβ group compared to the Aβ-injected rats. Also, GSH level was increased in the S. macilenta + Aβ group compared to the Aβ-injected rat.

Conclusion

Orally treatment of S. macilenta extract in Aβ-injected rats could ameliorate protective pathways and, so, it can be one of the proposed dietary supplements for the prevention of Alzheimer’s disease and dementia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lindeboom J, Weinstein H (2004) Neuropsychology of cognitive ageing, minimal cognitive impairment, Alzheimer’s disease, and vascular cognitive impairment. Eur J Pharmacol 490(1–3):83–86

    Article  CAS  PubMed  Google Scholar 

  2. Westermark GT et al (2015) AA amyloidosis: pathogenesis and targeted therapy. Annu Rev Pathol 10:321–344

    Article  CAS  PubMed  Google Scholar 

  3. Montiel T et al (2006) Role of oxidative stress on beta-amyloid neurotoxicity elicited during impairment of energy metabolism in the hippocampus: protection by antioxidants. Exp Neurol 200(2):496–508

    Article  CAS  PubMed  Google Scholar 

  4. Shallie OF et al (2020) Memory decline correlates with increased plasma cytokines in amyloid-beta (1–42) rat model of Alzheimer’s disease. Neurobiol Learn Mem 169:107187

    Article  CAS  PubMed  Google Scholar 

  5. Moechars D et al (1999) Early phenotypic changes in transgenic mice that overexpress different mutants of amyloid precursor protein in brain. J Biol Chem 274(10):6483–6492

    Article  CAS  PubMed  Google Scholar 

  6. Fitzjohn SM et al (2001) Age-related impairment of synaptic transmission but normal long-term potentiation in transgenic mice that overexpress the human APP695SWE mutant form of amyloid precursor protein. J Neurosci 21(13):4691–4698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Roder S et al (2003) Electrophysiological studies on the hippocampus and prefrontal cortex assessing the effects of amyloidosis in amyloid precursor protein 23 transgenic mice. Neuroscience 120(3):705–720

    Article  CAS  PubMed  Google Scholar 

  8. Ledezma C et al (2020) Effect of an intracerebroventricular injection of aggregated beta-amyloid (1–42) on daily rhythms of oxidative stress parameters in the prefrontal cortex. Neuroscience 458:99

    Article  PubMed  Google Scholar 

  9. Flores-Martinez E, Pena-Ortega F (2017) Amyloid beta peptide-induced changes in prefrontal cortex activity and its response to hippocampal input. Int J Pept 2017:7386809

    Article  PubMed  PubMed Central  Google Scholar 

  10. Yang Q et al (2019) Ginsenoside compound K regulates amyloid beta via the Nrf2/Keap1 signaling pathway in mice with scopolamine hydrobromide-induced memory impairments. J Mol Neurosci 67(1):62–71

    Article  CAS  PubMed  Google Scholar 

  11. Nouhi F et al (2011) Dietary supplementation with tBHQ, an Nrf2 stabilizer molecule, confers neuroprotection against apoptosis in amyloid beta-injected rat. Neurochem Res 36(5):870–878

    Article  CAS  PubMed  Google Scholar 

  12. Itoh K et al (1997) An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 236(2):313–322

    Article  CAS  PubMed  Google Scholar 

  13. Prestera T et al (1995) Parallel induction of heme oxygenase-1 and chemoprotective phase 2 enzymes by electrophiles and antioxidants: regulation by upstream antioxidant-responsive elements (ARE). Mol Med 1(7):827–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Simoni E et al (2017) Targeting the Nrf2/amyloid-beta liaison in Alzheimer’s disease: a rational approach. ACS Chem Neurosci 8(7):1618–1627

    Article  CAS  PubMed  Google Scholar 

  15. Bauer J et al (1991) IL-6-mediated events in Alzheimer’s disease pathology. Immunol Today 12(11):422

    Article  CAS  PubMed  Google Scholar 

  16. Ganter S et al (1992) Growth control of cultured microglia. J Neurosci Res 33(2):218–230

    Article  CAS  PubMed  Google Scholar 

  17. Hung JC et al (2002) In-house preparation of technetium 99m-labeled human serum albumin for evaluation of protein-losing gastroenteropathy. J Am Pharm Assoc 42(1):57–62

    Google Scholar 

  18. Song XM et al (2017) Aldose reductase inhibitors attenuate beta-amyloid-induced TNF-alpha production in microlgia via ROS-PKC-mediated NF-kappaB and MAPK pathways. Int Immunopharmacol 50:30–37

    Article  CAS  PubMed  Google Scholar 

  19. de Oliveira MR et al (2012) The effects of vitamin A supplementation for 3 months on adult rat nigrostriatal axis: increased monoamine oxidase enzyme activity, mitochondrial redox dysfunction, increased beta-amyloid(1–40) peptide and TNF-alpha contents, and susceptibility of mitochondria to an in vitro H2O2 challenge. Brain Res Bull 87(4–5):432–444

    Article  PubMed  Google Scholar 

  20. Perry NSL et al (2018) A randomised double-blind placebo-controlled pilot trial of a combined extract of sage, rosemary and melissa, traditional herbal medicines, on the enhancement of memory in normal healthy subjects, including influence of age. Phytomedicine 39:42–48

    Article  CAS  PubMed  Google Scholar 

  21. Tildesley NT et al (2003) Salvia lavandulaefolia (Spanish sage) enhances memory in healthy young volunteers. Pharmacol Biochem Behav 75(3):669–674

    Article  CAS  PubMed  Google Scholar 

  22. Asadi S et al (2010) In vitro antioxidant activities and an investigation of neuroprotection by six Salvia species from Iran: a comparative study. Food Chem Toxicol 48(5):1341–1349

    Article  CAS  PubMed  Google Scholar 

  23. Fischedick JT et al (2013) Structure activity relationship of phenolic diterpenes from Salvia officinalis as activators of the nuclear factor E2-related factor 2 pathway. Bioorg Med Chem 21(9):2618–2622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Porres-Martinez M et al (2015) Protective properties of Salvia lavandulifolia Vahl. essential oil against oxidative stress-induced neuronal injury. Food Chem Toxicol 80:154–162

    Article  CAS  PubMed  Google Scholar 

  25. Sefidkon ASRF (2005) Chemical composition of the essential oil of Salvia macilenta from Iran. Chem Nat Compd 41(2):168–170

    Article  Google Scholar 

  26. Asadi S et al (2011) Chemical composition analysis, antioxidant, antiglycating activities and neuroprotective effects of S. choloroleuca, S. mirzayanii and S. santolinifolia from Iran. Am J Chin Med 39(3):615–638

    Article  CAS  PubMed  Google Scholar 

  27. Tusi SK, Khodagholi F (2014) Salvia macilenta exhibits antiglycating activity and protects PC12 cells against H2O 2-induced apoptosis. Cytotechnology 66(1):169–179

    Article  PubMed  Google Scholar 

  28. Khodagholi F, Ashabi G (2013) Dietary supplementation with Salvia sahendica attenuates memory deficits, modulates CREB and its down-stream molecules and decreases apoptosis in amyloid beta-injected rats. Behav Brain Res 241:62–69

    Article  CAS  PubMed  Google Scholar 

  29. Tusi SK, Khodagholi F (2014) Salvia macilenta exhibits antiglycating activity and protects PC12 cells against HO-induced apoptosis. Cytotechnology 66:169

    Article  PubMed  Google Scholar 

  30. Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates, 2nd edn. Academic Press, Sydney, p 237

    Google Scholar 

  31. Menter T et al (2017) A more accurate approach to amyloid detection and subtyping: combining in situ congo red staining and immunohistochemistry. Pathobiology 84(1):49–55

    Article  CAS  PubMed  Google Scholar 

  32. Niimura M et al (2006) Prevention of apoptosis-inducing factor translocation is a possible mechanism for protective effects of hepatocyte growth factor against neuronal cell death in the hippocampus after transient forebrain ischemia. J Cereb Blood Flow Metab 26(11):1354–1365

    Article  CAS  PubMed  Google Scholar 

  33. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82(1):70–77

    Article  CAS  Google Scholar 

  34. Green LC et al (1982) Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem 126(1):131–138

    Article  CAS  PubMed  Google Scholar 

  35. Beers RF Jr, Sizer IW (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195(1):133–140

    Article  CAS  PubMed  Google Scholar 

  36. Flaubert Tchantchou YX, Yanjue Wu, Christen Y, Luo Y (2007) EGb 761 enhances adult hippocampal neurogenesis and phosphorylation of CREB in transgenic mouse model of Alzheimer’s disease. FASEB J 21(10):2400–2408

    Article  PubMed  Google Scholar 

  37. Dolleman-van der Weel MJ et al (2019) The nucleus reuniens of the thalamus sits at the nexus of a hippocampus and medial prefrontal cortex circuit enabling memory and behavior. Learn Mem 26(7):191–205

    Article  PubMed  PubMed Central  Google Scholar 

  38. Rissman RA et al (2003) Biochemical analysis of GABA(A) receptor subunits alpha 1, alpha 5, beta 1, beta 2 in the hippocampus of patients with Alzheimer’s disease neuropathology. Neuroscience 120(3):695–704

    Article  CAS  PubMed  Google Scholar 

  39. Miroddi M et al (2014) Systematic review of clinical trials assessing pharmacological properties of Salvia species on memory, cognitive impairment and Alzheimer’s disease. CNS Neurosci Ther 20(6):485–495

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ahmed HH et al (2013) Possible therapeutic uses of Salvia triloba and Piper nigrum in Alzheimer’s disease-induced rats. J Med Food 16(5):437–446

    Article  PubMed  Google Scholar 

  41. Zhang C et al (2012) Age-dependent and tissue-related glutathione redox status in a mouse model of Alzheimer’s disease. J Alzheimers Dis 28(3):655–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cecchi C et al (1999) Gluthatione level is altered in lymphoblasts from patients with familial Alzheimer’s disease. Neurosci Lett 275(2):152–154

    Article  CAS  PubMed  Google Scholar 

  43. Onodera K et al (2003) Oxidative damage of rat cerebral cortex and hippocampus, and changes in antioxidative defense systems caused by hyperoxia. Free Radic Res 37(4):367–372

    Article  CAS  PubMed  Google Scholar 

  44. Spiers JG et al (2019) Dysregulation of stress systems and nitric oxide signaling underlies neuronal dysfunction in Alzheimer’s disease. Free Radic Biol Med 134:468–483

    Article  CAS  PubMed  Google Scholar 

  45. Bonesi M et al (2017) Anti-inflammatory and antioxidant agents from Salvia genus (Lamiaceae): an assessment of the current state of knowledge. Antiinflamm Antiallergy Agents Med Chem 16(2):70–86

    Article  CAS  PubMed  Google Scholar 

  46. Sharman MJ et al (2019) Targeting inflammatory pathways in Alzheimer’s disease: a focus on natural products and phytomedicines. CNS Drugs 33(5):457–480

    Article  CAS  PubMed  Google Scholar 

  47. Prasad KN (2016) Simultaneous activation of Nrf2 and elevation of antioxidant compounds for reducing oxidative stress and chronic inflammation in human Alzheimer’s disease. Mech Ageing Dev 153:41–47

    Article  CAS  PubMed  Google Scholar 

  48. Yu H et al (2014) Neuroprotection against Abeta25-35-induced apoptosis by Salvia miltiorrhiza extract in SH-SY5Y cells. Neurochem Int 75:89–95

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Tehran University of Medical Sciences (Grant No. 1400-1-101-52633), Islamic Azad University Damghan Branch and Shahid Beheshti University of Medical Sciences Funds.

Author information

Authors and Affiliations

Authors

Contributions

GA and SK: conceptualization, formal analysis, data curation, writing manuscript. ST: performing the experiment. HS: formal analysis.

Corresponding authors

Correspondence to Hooman Shajiee or Ghorbangol Ashabi.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taheri, S., Khalifeh, S., Shajiee, H. et al. Dietary uptake of Salvia macilenta extract improves Nrf2 antioxidant signaling pathway and diminishes inflammation and apoptosis in amyloid beta-induced rats. Mol Biol Rep 48, 7667–7676 (2021). https://doi.org/10.1007/s11033-021-06772-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06772-5

Keywords

Navigation