Skip to main content

Advertisement

Log in

Analysis of the mitochondrial genome of the Indian darter, Anhinga melanogaster, suggests a species status taxonomic rank

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Anhinga melanogaster is a carnivorous water bird native to many Asian countries. A. melanogaster is part of the Old World clade of darters. There is currently significant debate about the organization of the Old World clade due to morphological and genetic ambiguities. It is essential to establish the taxonomic status of A. melanogaster because it was recently listed by the International Union for Conservation of Nature (IUCN) as a near threatened species.

Methods and results

The present study utilized a comprehensive molecular approach of the complete mitogenome of A. melanogaster to resolve its taxonomic status within the genus Anhinga. The mitogenome of A. melanogaster comprised of 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes and a control region. A partially duplicated cytochrome b gene and control region were also present.

Conclusions

Duplicated mitogenomic segments and phylogenetic analyses suggest that A. melanogaster, A. novaehollandiae, A. rufa and A. anhinga should be considered distinct species within the Old World clade of darters. The present study provides new insights into the mitogenome features of A. melanogaster and its evolutionary relationship within the genus, Anhinga.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Harrison CJO (1978) Osteological differences in the leg bones of two forms of Anhinga. Emu 78:230–231. https://doi.org/10.1071/MU9780230

    Article  Google Scholar 

  2. Johnsgard PA (1993) Cormorants, Darters, and Pelicans of the World. Smithsonian Institution Press, Washington

    Google Scholar 

  3. Worthy TH (2012) A new species of Oligo-Miocene darter (Aves: Anhingidae) from Australia. Auk 129:96–104. https://doi.org/10.1525/auk.2012.11204

    Article  Google Scholar 

  4. Stidham T, Patnaik R, Krishan K, Singh B, Ghosh A, Singla A, Kotla SS (2017) The first darter (Aves: Anhingidae) fossils from India (late Pliocene). PloS one 12:e0177129. https://doi.org/10.1371/journal.pone.0177129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kennedy M, Seneviratne SS, Mendis UK, Spencer HG (2019) Sorting out the snakebirds: The species status, phylogeny, and biogeography of the darters (Aves: Anhingidae). J Zool Syst Evol Res 57:892–899. https://doi.org/10.1111/jzs.12299

    Article  Google Scholar 

  6. Schodde R, Kirwan GM, Porter R (2012) Morphological differentiation and speciation among darters (Anhinga). Bull Br Ornithol Club 132:283–294

    Google Scholar 

  7. Nagarajan M, Raja M, Vikram P (2016) Genetic characterization of Bagarius species using cytochrome c oxidase I and cytochrome b genes. Mitochondrial DNA Part A 27:3781–3783. https://doi.org/10.3109/19401736.2015.1079902

    Article  CAS  Google Scholar 

  8. Kameshpandian P, Thomas S, Nagarajan M (2018) Genetic diversity and relationship of Indian Muscovy duck populations. Mitochondrial DNA Part A 29:165–169. https://doi.org/10.1080/24701394.2016.1261851

    Article  CAS  Google Scholar 

  9. Kamalakkannan R, Jose J, Thomas S, Prabhu VR, Nagarajan M (2018) Genetic diversity and maternal lineages of south Indian goats. Mol Biol Rep 45:2741–2748. https://doi.org/10.1007/s11033-018-4322-5

    Article  CAS  PubMed  Google Scholar 

  10. Prabhu VR, Arjun MS, Bhavana K, Kamalakkannan R, Nagarajan M (2019) Complete mitochondrial genome of Indian mithun, Bos frontalis and its phylogenetic implications. Mol Biol Rep 46:2561–2566. https://doi.org/10.1007/s11033-019-04675-0

    Article  CAS  PubMed  Google Scholar 

  11. Prabhu VR, Singha HS, Kumar RG, Gopalakrishnan A, Nagarajan M (2020) Characterization of the complete mitochondrial genome of Barilius malabaricus and its phylogenetic implications. Genomics 112:2154–2163. https://doi.org/10.1016/j.ygeno.2019.12.009

    Article  CAS  PubMed  Google Scholar 

  12. Kamalakkannan R, Bhavana K, Prabhu VR, Sureshgopi D, Singha HS, Nagarajan M (2020) The complete mitochondrial genome of Indian gaur, Bos gaurus and its phylogenetic implications. Sci Rep 10:1–11. https://doi.org/10.1038/s41598-020-68724-6

    Article  CAS  Google Scholar 

  13. Kennedy M, Holland BR, Gray RD, Spencer HG (2005) Untangling long branches: identifying conflicting phylogenetic signals using spectral analysis, neighbor-net, and consensus networks. Syst Biol 54:620–633. https://doi.org/10.1080/106351591007462

    Article  PubMed  Google Scholar 

  14. Sambrook J, Russell DW (2001) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  15. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17:10–12. https://doi.org/10.14806/ej.17.1.200

    Article  Google Scholar 

  16. Joshi N, Fass J (2011) Sickle: A sliding-window, adaptive, quality-based trimming tool for fastQ files (version 1.33) [software]. Accessed https://github.com/najoshi/sickle

  17. Xu H, Luo X, Qian J, Pang X, Song J, Qian G, Chen J, Chen S (2012) FastUniq: a fast de novo duplicates removal tool for paired short reads. PloS one 7:e52249. https://doi.org/10.1371/journal.pone.0052249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bernt M, Donath A, Jühling F, Externbrink F, Florentz C, Fritzsch G, Pütz J, Middendorf M, Stadler PF (2013) MITOS: Improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol 69:313–319. https://doi.org/10.1016/j.ympev.2012.08.023

    Article  PubMed  Google Scholar 

  19. Greiner S, Lehwark P, Bock R (2019) Organellar genome draw (OGDRAW) version 1.3. 1: expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Res 47:W59–W64. https://doi.org/10.1093/nar/gkz238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lowe TM, Chan PP (2016) tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res 44:W54–W57. https://doi.org/10.1093/nar/gkw413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Perna NT, Kocher TD (1995) Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J Mol Evol 41:353–358. https://doi.org/10.1007/BF01215182

    Article  CAS  PubMed  Google Scholar 

  22. Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  Google Scholar 

  24. Cho HJ, Eda M, Nishida S, Yasukochi Y, Chong JR, Koike H (2009) Tandem duplication of mitochondrial DNA in the black-faced spoonbill, Platalea minor. Genes Genet Syst 84:297–305. https://doi.org/10.1266/ggs.84.297

    Article  CAS  PubMed  Google Scholar 

  25. Zhou X, Lin Q, Fang W, Chen X (2014) The complete mitochondrial genomes of sixteen ardeid birds revealing the evolutionary process of the gene rearrangements. BMC Genomics 15:1–9. https://doi.org/10.1186/1471-2164-15-573

    Article  Google Scholar 

  26. Gibb GC, Kardailsky O, Kimball RT, Braun EL, Penny D (2007) Mitochondrial genomes and avian phylogeny: complex characters and resolvability without explosive radiations. Mol Biol Evol 24:269–280. https://doi.org/10.1093/molbev/msl158

    Article  CAS  PubMed  Google Scholar 

  27. Morris-Pocock JA, Taylor SA, Birt TP, Friesen VL (2010) Concerted evolution of duplicated mitochondrial control regions in three related seabird species. BMC Evol Biol 10:14. https://doi.org/10.1186/1471-2148-10-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. San Mauro D, García-París M, Zardoya R (2004) Phylogenetic relationships of discoglossid frogs (Amphibia: Anura: Discoglossidae) based on complete mitochondrial genomes and nuclear genes. Gene 343:357–366. https://doi.org/10.1016/j.gene.2004.10.001

    Article  CAS  PubMed  Google Scholar 

  29. Liu G, Li C, Du Y, Liu X (2017) The complete mitochondrial genome of Japanese sparrowhawk (Accipiter gularis) and the phylogenetic relationships among some predatory birds. Biochem Syst Ecol 70:116–125. https://doi.org/10.1016/j.bse.2016.11.007

    Article  CAS  Google Scholar 

  30. Chen W, Zhang C, Pan T, Liu W, Li K, Hu C, Chang Q (2018) The mitochondrial genome of the Kentish Plover Charadrius alexandrinus (Charadriiformes: Charadriidae) and phylogenetic analysis of Charadrii. Genes Genom 40:955–963. https://doi.org/10.1007/s13258-018-0703-3

    Article  CAS  Google Scholar 

  31. Eberhard JR, Wright TF, Bermingham E (2001) Duplication and concerted evolution of the mitochondrial control region in the parrot genus Amazona. Mol Biol Evol 18:1330–1342. https://doi.org/10.1093/oxfordjournals.molbev.a003917

    Article  CAS  PubMed  Google Scholar 

  32. Abbott CL, Double MC, Trueman JW, Robinson A, Cockburn A (2005) An unusual source of apparent mitochondrial heteroplasmy: duplicate mitochondrial control regions in Thalassarche albatrosses. Mol Ecol 14:3605–3613. https://doi.org/10.1111/j.1365-294X.2005.02672.x

    Article  CAS  PubMed  Google Scholar 

  33. Singh TR, Shneor O, Huchon D (2008) Bird mitochondrial gene order: insight from 3 warbler mitochondrial genomes. Mol Biol Evol 25:475–477. https://doi.org/10.1093/molbev/msn003

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The first author is thankful to the Kerala State Council for Science Technology and Environment (KSCSTE), Government of Kerala for the support in the form of a research fellowship. Karippadakam Bhavana was supported by the UGC (365844) through Ph.D fellowship. The authors are grateful to the anonymous reviewers for their valuable comments and suggestions which improved the manuscript. The authors are also grateful to Dr. Jacob Alexander, Veterinary Surgeon, Zoological Park, Trivandrum, Kerala.

Funding

The study was partially supported by the Science and Engineering Research Board (SERB), Department of Science and Technology, Government of India, New Delhi (SR/S0/AS-84/2012).

Author information

Authors and Affiliations

Authors

Contributions

MN conceived the study. ST performed the experiments. HSS, ST, RK, KB and MN performed the analyses. MN, HSS, SG and KB wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Muniyandi Nagarajan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study does not require ethical approval as the tissue sample used was collected from deceased specimen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, S., Singha, H.S., Kamalakkannan, R. et al. Analysis of the mitochondrial genome of the Indian darter, Anhinga melanogaster, suggests a species status taxonomic rank. Mol Biol Rep 48, 7343–7350 (2021). https://doi.org/10.1007/s11033-021-06737-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06737-8

Keywords

Navigation