Skip to main content
Log in

Mitochondrial disease patients with novel ND4 12058A > C and ND1 m.3911A > G variations: implications for a role in the phenotype following a bioinformatic investigation

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Mitochondrial diseases include a wide group of clinically heterogeneous disorders caused by a dysfunction of the mitochondrial respiratory chain and can be related to mutations in nuclear or mitochondrial DNA genes. In the present report, we performed a whole mitochondrial genome screening in two patients with clinical features of mitochondrial diseases. Mutational analysis revealed the presence of two undescribed heteroplasmic mitochondrial variations, the m.3911A > G (E202G) variant in the MT-ND1 gene found in two patients (P1 and P2) and the m.12058A > C (E433D) pathogenic variant in the MT-ND4 gene present only in patient P2 who had a more severe phenotype. These two substitutions were predicted to be damaging by several bioinformatics tools and lead to amino acid changes in two conserved residues localized in two important functional domains of the mitochondrial subunits of complex I. Furthermore, the 3D modeling suggested that the two amino acid changes could therefore alter the structure of the two subunits and may decrease the stability and the function of complex I. The two described pathogenic variants found in patient P2 could act synergically and alter the complex I function by affecting the proton pumping processes and the energy production and then could explain the severe phenotype compared to patient P1 presenting only the E202G substitution in ND1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Schaefer AM, McFarland R, Blakely EL, He L, Whittaker RG, Taylor RW, Chinnery PF, Turnbull DM (2008) Prevalence of mitochondrial DNA disease in adults. Ann Neurol 63:35–39. https://doi.org/10.1002/ana.21217

    Article  CAS  PubMed  Google Scholar 

  2. Karaa A, Goldstein A (2015) The spectrum of clinical presentation, diagnosis, and management of mitochondrial forms of diabetes. Pediatr Diabetes 16(1):1–9. https://doi.org/10.1111/pedi.12223

    Article  PubMed  Google Scholar 

  3. Gorman GS, Chinnery PF, DiMauro S, Hirano M, Koga Y, McFarland R, Suomalainen A, Thorburn DR, Zeviani M, Turnbull DM (2016) Mitochondrial diseases. Nat Rev Dis Primers 2:16080. https://doi.org/10.1038/nrdp.2016.80

    Article  PubMed  Google Scholar 

  4. Chinnery PF, Elliott C, Green GR (2000) The spectrum of hearing loss due to mitochondrial DNA defects. Brain 123:82–92. https://doi.org/10.1093/brain/123.1.82

    Article  PubMed  Google Scholar 

  5. Cui H, Li F, Chen D, Wang G, Truong CK, Enns GM, Graham B, Milone M, Landsverk ML, Wang J, Zhang W, Wong LJ (2013) Comprehensive next-generation sequence analyses of the entire mitochondrial genome reveal new insights into the molecular diagnosis of mitochondrial DNA disorders. Genet Med 15:388–394. https://doi.org/10.1038/gim.2012.144

    Article  CAS  PubMed  Google Scholar 

  6. Taylor RW, Turnbull DM (2005) Mitochondrial DNA mutations in human disease. Nat Rev Genet 6(5):389–402. https://doi.org/10.1038/nrg1606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mitchell AL, Elson JL, Howell N, Taylor RW, Turnbull DM (2006) Sequence variation in mitochondrial complex I genes: mutation or polymorphism? J Med Genet 43:175–179. https://doi.org/10.1136/jmg.2005.032474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Stenton SL, Prokisch H (2020) Genetics of mitochondrial diseases: identifying mutations to help diagnosis. EBioMedicine 56:102784. https://doi.org/10.1016/j.ebiom.2020.102784

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lewin HA, Stewart-Haynes JA (1992) A simple method for DNA extraction from leukocytes for use in PCR. Biotechniques 13:522–524

    CAS  PubMed  Google Scholar 

  10. Rieder MJ, Taylor SL, Tove VO, Nickerson DA (1998) Automating the identification of DNA variations using quality-based fluorescence re-sequencing, analysis of the human mitochondrial genome. Nucl Acids Res 26:967–973. https://doi.org/10.1093/nar/26.4.967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Adzhubei I, Jordan DM, Sunyaev SR (2013) Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet 7:7.20. https://doi.org/10.1002/0471142905.hg0720s76

    Article  Google Scholar 

  12. Choi Y, Chan AP (2015) PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics 16:15–31. https://doi.org/10.1093/bioinformatics/btv195

    Article  CAS  Google Scholar 

  13. Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B, Daverman R, Diemer K, Muruganujan A, Narechania A (2003) PANTHER: a library of protein families and subfamilies indexed by function. Genome Res 13:2129–2141. https://doi.org/10.1101/gr.772403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Capriotti E, Calabrese R, Casadio R (2006) Predicting the insurgence of human genetic diseases associated to single point protein mutations with support vector machines and evolutionary information. Bioinformatics 22(22):2729–34. https://doi.org/10.1093/bioinformatics/btl423

    Article  CAS  PubMed  Google Scholar 

  15. Stenson PD, Mort M, Ball EV, Evans K, Hayden M, Heywood S, Hussain M, Phillips AD, Cooper DN (2017) The human gene mutation database: towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies. Hum Genet 136(6):665–677. https://doi.org/10.1002/ana.21217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bromberg Y, Rost B (2007) SNAP: predict effect of non-synonymous polymorphisms on function. Nucleic Acids Res 35(11):3823–3835. https://doi.org/10.1093/nar/gkm238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tusnády GE, Simon I (2001) The HMMTOP transmembrane topology prediction server. Bioinformatics 17(9):849–50. https://doi.org/10.1093/bioinformatics/17.9.849

    Article  PubMed  Google Scholar 

  18. Yachdav G, Kloppmann E, Kajan L, Hetch M, Goldberg T, Hamp T, Hönigschmid P, Schafferhans A, Roos M, Bernhofer M, Richter L, Ashkenazy H, Punta M, Schlessinger A, Bromberg Y, Schneider R, Vriend G, Sander C, Ben-Tal N, Rost B (2014) PredictProtein-an open resource for online prediction of protein structural and functional features. Nucleic Acids Res 42(337):43. https://doi.org/10.1093/nar/gku366

    Article  CAS  Google Scholar 

  19. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. https://doi.org/10.1093/nar/25.17.3389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Martí-Renom MA, Stuart AC, Fiser A, Sánchez R, Melo F, Sali A (2000) Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct 29:291–325. https://doi.org/10.1146/annurev.biophys.29.1.291

    Article  PubMed  Google Scholar 

  21. Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three dimensional structures of proteins. Nucleic Acids Res 35:W407–W410. https://doi.org/10.1093/nar/gkm290

    Article  PubMed  PubMed Central  Google Scholar 

  22. Herrnstadt C, Elson JL, Fahy E et al (2002) Reduced-median-network analysis of complete mitochondrial DNA coding-region sequences for the major African, Asian, and European haplogroups. Am J Hum Genet 70:1152–1171. https://doi.org/10.1086/339933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kivisild T, Reida M, Metspalu E et al (2004) Ethiopian mitochondrial DNA heritage: tracking gene flow across and around the gate of tears. Am J Hum Genet 75:752–770. https://doi.org/10.1086/425161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fisher N, Rich PR (2000) A motif for quinone binding sites in respiratory and photosynthetic systems. J Mol Biol 296:1153–62. https://doi.org/10.1006/jmbi.2000.3509

    Article  CAS  PubMed  Google Scholar 

  25. Fearnley IM, Walker JE (1992) Conservation of sequences of subunits of mitochondrial complex-I and their relationships with other protein. Biochim Biophys Acta 1140:105–34. https://doi.org/10.1016/0005-2728(92)90001-i

    Article  CAS  PubMed  Google Scholar 

  26. Wong A, Cavelier L, Collins-Schramm HE, Seldin MF, McGrogan M, Savontaus ML, Cortopassi GA (2002) Differentiation-specific effects of LHON mutations introduced into neuronal NT2 cells. Hum Mol Genet 11:431–438. https://doi.org/10.1093/hmg/11.4.431

    Article  CAS  PubMed  Google Scholar 

  27. Kumar M, Tanwar M, Saxena R, Sharma P, Dada R (2010) Identification of novel mitochondrial mutations in Leber’s hereditary optic neuropathy. Mol Vis 16:782–792

    CAS  PubMed  PubMed Central  Google Scholar 

  28. van der Walt EM, Smuts I, Taylor RW, Elson JL, Turnbull DM, Louw R, van der Westhuizen FH (2012) Characterization of mtDNA variation in a cohort of South African paediatric patients with mitochondrial disease. Eur J Human Genet 20(6):650–656. https://doi.org/10.1038/ejhg.2011.262

    Article  CAS  Google Scholar 

  29. Murray JJ, Nolan KW, McClelland C, Lee MS (2017) Leber Hereditary Optic Neuropathy: visual recovery in a patient with the rare m.3890G>A point mutation. J Neuro-Ophthalmol 37(2):166–171. https://doi.org/10.1097/WNO.0000000000000462

    Article  Google Scholar 

  30. De Vries DD, Went LN, Bruyn GW, Scholte HR, Hofstra RM, Bolhuis PA, van Oost BA (1996) Genetic and biochemical impairment of mitochondrial complex I activity in a family with Leber hereditary optic neuropathy and hereditary spastic dystonia. Am J Hum Genet 58:703–771

    PubMed  PubMed Central  Google Scholar 

  31. Mimaki M, Ikota A, Sato A, Komaki H, Akanuma J, Nonaka I, Goto Y (2003) A double mutation (G11778A and G12192A) in mitochondrial DNA associated with Leber’s hereditary optic neuropathy and cardiomyopathy. J Hum Genet 48:47–50. https://doi.org/10.1007/s100380300005

    Article  CAS  PubMed  Google Scholar 

  32. Qu J, Li R, Zhou X, Tong Y, Lu F, Qian Y, Hu Y, Mo JQ, West CE, Guan MX (2006) The novel A4435G mutation in the mitochondrial tRNA-Met may modulate the phenotypic expression of the LHON-associated ND4 G11778A mutation. Invest Ophthal Vis Sci 47:475–483. https://doi.org/10.1167/iovs.05-0665

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank patients and their families for their cooperation in the present study. This work was supported by The Ministry of Higher Education and the Scientific Research in Tunisia.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation, data collection and analysis were performed by EMR and MA. The first draft of the manuscript was written by EMR and all authors commented on previous versions of the manuscript. RF, OAF and MM, contributed to molecular genetic studies. LS, IC, MH provided the clinical explorations, supervised and conceived the clinical part of the manuscript. FF supervised and conceived the molecular genetic studies and drafted the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Emna Mkaouar-Rebai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest or financial relationships relevant to this article to disclose.

Ethical approval

The study design was approved by the committee on research ethics: Comité de Protection des Personnes SUD (C.P.P.SUD) and we declare that all procedures performed in this study involving human participants were conducted in accordance with the principles stated in the Declaration of Helsinki-Ethical Principles for Medical Research Involving Human Subjects, Helsinki, Finland, 1964.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mkaouar-Rebai, E., Ammar, M., Sfaihi, L. et al. Mitochondrial disease patients with novel ND4 12058A > C and ND1 m.3911A > G variations: implications for a role in the phenotype following a bioinformatic investigation. Mol Biol Rep 48, 4373–4382 (2021). https://doi.org/10.1007/s11033-021-06452-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06452-4

Keywords

Navigation