Skip to main content

Advertisement

Log in

Association of cell free mitochondrial DNA and caspase-1 expression with disease severity and ARTs efficacy in HIV infection

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

HIV infection is a global health concern. Current HIV-diagnostics provide information about the disease progression and efficacy of anti-retroviral therapies (ARVs), but this information is very limited and sometimes imprecise. Present study assessed the potential role of mononuclear cell (MNC) death, expression of caspases (1&3) and cell free mitochondrial DNA (CF mt-DNA) in HIV infected individuals. Apoptosis, cell-count, expression of caspases and CF mt-DNA were measured through flow cytometry and qPCR, respectively, in HIV infected individuals (n = 120) divided in two groups i.e. ARVs-receiving (treated, n = 87), ART-naïve (untreated, n = 37) and healthy individuals (n = 47). Data showed significant (p < 0.0001) cell death in untreated individuals than treated and healthy individuals. CD4-positive T-cell percentage declined (p < 0.0001) in untreated as compared to treated individuals. Caspase-1, an indicator of pyroptosis, and CF mt-DNA were also elevated in untreated HIV infected individuals. Untreated individuals when administered with ARVs showed improved CD4-positive T-cell percentage, lower caspase-1, CF mt-DNA and cell death. Data elucidated positive co-relation between cell death and CF mt-DNA in treated and untreated HIV infected individuals. While CD4-positive T-cell percentage was negatively correlated with caspase-1 expression and CF mt-DNA. Elevated levels of CF mt-DNA and caspase-1 in HIV infected individuals, positive correlation between cell death and CF mt-DNA, negative correlation of CD4-positive T-cell percentage with CF mt-DNA and caspase-1 expression clearly indicated the potential of CF mt-DNA and caspase-1 as a novel disease progression and ARTs effectiveness biomarkers in HIV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All the relevant data points are included in the manuscript. For acquisition of raw data, please contact Mariam Anees (mariam@qau.edu.pk).

References

  1. Burack JH, Barrett DC, Stall RD, Chesney MA, Ekstrand ML, Coates TJ (1993) Depressive symptoms and CD4 lymphocyte decline among HIV-infected men. JAMA 270:2568–2573. https://doi.org/10.1001/jama.1993.03510210054027

    Article  CAS  PubMed  Google Scholar 

  2. Cells CD, Laurent-crawford AG, Krust B, Rivière Y, Müller S, Kieny MP, Dauguet C, Ara G (1993) Membrane expression of HIV envelope glycoproteins triggers apoptosis in CD4 cells. AIDS Res Hum Retrovir 9:761–773

    Article  Google Scholar 

  3. Finkel TH, Tudor-Williams G, Banda NK, Cotton MF, Curiel T, Monks C, Baba TW, Ruprecht RM, Kupfer A (1995) Apoptosis occurs predominantly in bystander cells and not in productively infected cells of HIV- and SIV-infected lymph nodes. Nat Med 1:129–134. https://doi.org/10.1038/nm0295-129

    Article  CAS  PubMed  Google Scholar 

  4. Campbell GR, Spector SA (2019) DIABLO/SMAC mimetics selectively kill HIV-1-infected resting memory CD4+ T cells: a potential role in a cure strategy for HIV-1 infection. Autophagy 15:744–746. https://doi.org/10.1080/15548627.2019.1569950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Serrano A, El HS, Moal F, Prazuck T, Legac E, Robin C, Brule F, Charpentier S, Normand T, Legrand A, Hocqueloux L, Mollet L (2018) Dysregulation of apoptosis and autophagy gene expression in peripheral blood mononuclear cells of efficiently treated HIV-infected patients. AIDS 32:1579–1587. https://doi.org/10.1097/QAD.0000000000001851

    Article  CAS  PubMed  Google Scholar 

  6. Ta V, Laubach S, Diego S, Ta V, Laubach S, Diego S (2015) Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection. Pediatrics 135:S13–S15. https://doi.org/10.1542/peds.2014

    Article  Google Scholar 

  7. Yu F, Ma C, Jin X, Zhao H, Xiao J, Li L, Sing S, Zhang X, Xie X, Yang S, Tang Y, Wang L, Zhang F (2019) Increased mitochondrial mass leads to heightened pyroptosis that drives CD4+ T cell depletion in patients with HIV-1 infection. Available at SSRN: 3475569. https://doi.org/10.2139/ssrn.3475569

  8. Frank MO (2016) Circulating cell-free DNA differentiates severity of inflammation. Biol Res Nurs 18:477–488. https://doi.org/10.1177/1099800416642571

    Article  CAS  PubMed  Google Scholar 

  9. Mehta SR, Pérez-Santiago J, Hulgan T, Day TRC, Barnholtz-Sloan J, Gittleman H, Letendre S, Ellis R, Heaton R, Patton S, Suben JD, Franklin D, Rosario D, Clifford DB, Collier AC, Marra CM, Gelman BB, McArthur J, McCutchan A, Morgello S, Simpson D, Connor J, Grant I, Kallianpur A (2017) Cerebrospinal fluid cell-free mitochondrial DNA is associated with HIV replication, iron transport, and mild HIV-associated neurocognitive impairment. J Neuroinflamm 14:1–9. https://doi.org/10.1186/s12974-017-0848-z

    Article  CAS  Google Scholar 

  10. Ellinger J, Müller SC, Wernert N, Von Ruecker A, Bastian PJ (2008) Mitochondrial DNA in serum of patients with prostate cancer: a predictor of biochemical recurrence after prostatectomy. BJU Int 102:628–632. https://doi.org/10.1111/j.1464-410X.2008.07613.x

    Article  PubMed  Google Scholar 

  11. Nakahira K, Kyung SY, Rogers AJ, Gazourian L, Youn S, Massaro AF, Quintana C, Osorio JC, Wang Z, Zhao Y, Lawler LA, Christie JD, Meyer NJ, Causland FRM, Waikar SS, Waxman AB, Chung RT, Bueno R, Rosas IO, Fredenburgh LE, Baron RM, Christiani DC, Hunninghake GM, Choi AMK (2013) Circulating mitochondrial DNA in patients in the ICU as a marker of mortality: derivation and validation. PLoS Med 10:1–12. https://doi.org/10.1371/journal.pmed.1001577

    Article  Google Scholar 

  12. Dwivedi DJ, Toltl LJ, Swystun LL, Pogue J, Liaw K-L, Weitz JI, Cook DJ, Fox-Robichaud AE, Liaw PC, Group the CCCTB (2012) Prognostic utility and characterization of cell-free DNA in patients with severe sepsis. Crit Care 16:R151. https://doi.org/10.1186/cc11466

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kung C-T, Hsiao S-Y, Tsai T-C, Su C-M, Chang W-N, Huang C-R, Wang H-C, Lin W-C, Chang H-W, Lin Y-J, Cheng B-C, Su BY-J, Tsai N-W, Lu C-H (2012) Plasma nuclear and mitochondrial DNA levels as predictors of outcome in severe sepsis patients in the emergency room. J Transl Med 10:130. https://doi.org/10.1186/1479-5876-10-130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Swarup V, Rajeswari MR (2007) Circulating (cell-free) nucleic acids—a promising, non-invasive tool for early detection of several human diseases. FEBS Lett 581:795–799

    Article  CAS  Google Scholar 

  15. Boyapati RK, Rossi AG, Satsangi J, Ho GT (2016) Gut mucosal DAMPs in IBD: from mechanisms to therapeutic implications. Mucosal Immunol 9:567–582. https://doi.org/10.1038/mi.2016.14

    Article  CAS  PubMed  Google Scholar 

  16. Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, Brohi K, Itagaki K, Hauser CJ (2010) Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464:104–107. https://doi.org/10.1038/nature08780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Crepaz N, Tang T, Marks G, Medicine HH-A of I (2017) Undefined viral suppression patterns among persons in the United States with diagnosed HIV infection in 2014. Ann Intern Med 167(6):446. https://doi.org/10.7326/L17-0278

    Article  PubMed  Google Scholar 

  18. Rio DC, Ares M, Hannon GJ, Nilsen TW (2010) Purification of RNA using TRIzol (TRI reagent). Cold Spring Harb Protoc 5:1–4. https://doi.org/10.1101/pdb.prot5439

    Article  Google Scholar 

  19. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  Google Scholar 

  20. Sambrook J, Russell DW (2006) Purification of nucleic acids by extraction with phenol: chloroform. Cold Spring Harb Protoc 2006:4455. https://doi.org/10.1101/pdb.prot4455

    Article  Google Scholar 

  21. Malik AN, Shahni R, Rodriguez-de-Ledesma A, Laftah A, Cunningham P (2011) Mitochondrial DNA as a non-invasive biomarker: accurate quantification using real time quantitative PCR without co-amplification of pseudogenes and dilution bias. Biochem Biophys Res Commun 412:1–7. https://doi.org/10.1016/j.bbrc.2011.06.067

    Article  CAS  PubMed  Google Scholar 

  22. Feria MG, Taborda NA, Hernandez JC, Rugeles MT (2018) HIV replication is associated to inflammasomes activation, IL-1β, IL-18 and caspase-1 expression in GALT and peripheral blood. PLoS ONE 13:1–14. https://doi.org/10.1371/journal.pone.0192845

    Article  CAS  Google Scholar 

  23. Hunt PW (2012) HIV and inflammation: mechanisms and consequences. Curr HIV/AIDS Rep 9:139–147. https://doi.org/10.1007/s11904-012-0118-8

    Article  PubMed  Google Scholar 

  24. Stylianou E, Bjerkeli V, Yndestad A, Heggelund L, Wæhre T, Damås JK, Aukrust P, Frøland SS (2003) Raised serum levels of interleukin-18 is associated with disease progression and may contribute to virological treatment failure in HIV-1-infected patients. Clin Exp Immunol 132:462–466. https://doi.org/10.1046/j.1365-2249.2003.02179.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Février M, Dorgham K, Rebollo A (2011) CD4 +T cell depletion in human immunodeficiency virus (HIV) infection: role of apoptosis. Viruses 3:586–612

    Article  Google Scholar 

  26. Komanduri KV, Viswanathan MN, Wieder ED, Schmidt DK, Bredt BM, Jacobson MA, McCune MJ (1998) Restoration of cytomegalovirus-specific CD4+ T-lymphocyte responses after ganciclovir and highly active antiretroviral therapy in individuals infected with HIV-1. Nat Med 4(953):956

    Google Scholar 

  27. Autran B, Carcelain G, Li TS, Blanc C, Mathez D, Tubiana R, Katlama C, Debré P, Leibowitch J (1997) Positive effects of combined antiretroviral therapy on CD4+ T cell homeostasis and function in advanced HIV disease. Science 277:112–116. https://doi.org/10.1126/science.277.5322.112

    Article  CAS  PubMed  Google Scholar 

  28. Wensing AM, Calvez V, Ceccherini-Silberstein F, Charpentier C, Günthard HF, Paredes R, Shafer RW, Richman DD (2019) 2019 update of the drug resistance mutations in HIV-1. Top Antivir Med 27:111–121

    PubMed  PubMed Central  Google Scholar 

  29. Uppal SS, Verma S, Dhot PS (2003) Normal values of CD4 and CD8 lymphocyte subsets in healthy indian adults and the effects of sex, age, ethnicity, and smoking. Cytometry 52B:32–36. https://doi.org/10.1002/cyto.b.10011

    Article  Google Scholar 

  30. Jiang W, Kang L, Lu H-Z, Pan X, Lin Q, Pan Q, Xue Y, Weng X, Tang Y-W (2004) Normal values for CD4 and CD8 lymphocyte subsets in healthy Chinese adults from Shanghai. Clin Diagn Lab Immunol 11:811–813. https://doi.org/10.1128/CDLI.11.4.811-813.2004

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wallace MR, Moss RB, Beecham HJIII, Grace CJ, Hersh EM, Peterson E, Murphy R, Shepp DH, Siegal FP, Turner JL, Safrin S, Carlo DJ, Levine AM (1996) Early clinical markers and CD4 percentage in subjects with human immunodeficiency virus infection. JAIDS J Acquir Immune Defic Syndr 12:358–362

    Article  CAS  Google Scholar 

  32. Le TP, Tribble DR, Zhou SY, Malone L, Chung RC, Rusnak JM, Wagner KF (1997) Clinical significance of discordant CD4 count and CD4 percentage in HIV-infected individuals. AIDS 11:1395–1396

    CAS  PubMed  Google Scholar 

  33. Cai R, Liu L, Luo B, Wang J, Shen J, Shen Y, Zhang R, Chen J, Lu H (2017) Caspase-1 activity in CD4 T cells is downregulated following antiretroviral therapy for HIV-1 infection. AIDS Res Hum Retrovir 33:164–171. https://doi.org/10.1089/aid.2016.0234

    Article  CAS  PubMed  Google Scholar 

  34. Kohler C, Radpour R, Barekati Z, Asadollahi R, Bitzer J, Wight E, Bürki N, Diesch C, Holzgreve W, Zhong XY (2009) Levels of plasma circulating cell free nuclear and mitochondrial DNA as potential biomarkers for breast tumors. Mol Cancer 8:105. https://doi.org/10.1186/1476-4598-8-105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Arnalich F, Maldifassi MC, Ciria E, Codoceo R, Renart J, Fernández-Capitán C, Herruzo R, Garcia-Rio F, López-Collazo E, Montiel C (2013) Plasma levels of mitochondrial and nuclear DNA in patients with massive pulmonary embolism in the emergency department: a prospective cohort study. Crit Care. https://doi.org/10.1186/cc12735

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ali Z, Waseem S, Anis RA, Anees M (2020) Assessment of cell free mitochondrial DNA as a biomarker of disease severity in different viral infections. Pak J Med Sci 36:860–866. https://doi.org/10.12669/pjms.36.5.2476

    Article  PubMed  PubMed Central  Google Scholar 

  37. Jacotot E, Ravagnan L, Loeffler M, Ferri KF, Vieira HLA, Zamzami N, Costantini P, Druillennec S, Hoebeke J, Briand JP, Irinopoulou T, Daugas E, Susin SA, Cointe D, Xie ZH, Reed JC, Roques BP, Kroemer G (2000) The HIV-1 viral protein R induces apoptosis via a direct effect on the mitochondrial permeability transition pore. J Exp Med 191:33–45. https://doi.org/10.1084/jem.191.1.33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Arshad O, Gadawska I, Sattha B, Côté HCF, Hsieh AYY (2018) Elevated cell-free mitochondrial DNA in filtered plasma is associated with HIV infection and inflammation. J Acquir Immune Defic Syndr 78(1):111–118

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to Mr. Asghar Satti, Mr. Uzair Tariq, Miss Kalsoom Zahra and Mr. Ramzan from Association of People Living with HIV (APLHIV) Pakistan for their kind help in sampling and provision of necessary data.

Funding

The project has been supported financially by Higher Education Commission Grant No. NRPU 4481 to M. A. Research associate funding was provided to ZA in the same project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariam Anees.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 12 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, Z., Waseem, S., Shahzadi, I. et al. Association of cell free mitochondrial DNA and caspase-1 expression with disease severity and ARTs efficacy in HIV infection. Mol Biol Rep 48, 3327–3336 (2021). https://doi.org/10.1007/s11033-021-06313-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06313-0

Keywords

Navigation