Skip to main content
Log in

P2X7 receptor-mediated phenotype switching of pulmonary artery smooth muscle cells in hypoxia

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

P2X7R activation contributes to the pathogenesis of pulmonary hypertension. However, the molecular mechanism through which P2X7R participates in pulmonary vascular remodeling is largely unknown. The rats and pulmonary artery smooth muscle cells (PASMCs) were maintained under hypoxia. P2X7R expression was determined by real-time PCR and western blotting. The pathological changes of lung tissue were evaluated via HE staining after treatment with a P2X7R antagonist, A740003. After treatment with A740003 or silencing P2X7R, proliferating cell nuclear antigen (PCNA), phenotype markers and phospho-c-Jun N-terminal kinase (JNK)/JNK expression were tested by western blotting. P2X7R expression in hypoxia group was significantly higher than that in normoxia group in vivo and in vitro. The pathological changes of lung tissue induced by hypoxia were significantly relieved by treatment with a P2X7R antagonist, A740003. Hypoxia stimulated the proliferation and synthetic phenotype of PASMCs, which were aggravated by a P2X7R agonist treatment and alleviated by a P2X7R antagonist or silencing P2X7R mRNA treatment. Silencing P2X7R mRNA significantly decreased the hypoxia-induced upregulation of phospho-JNK/JNK in PASMCs. The phenotype switching of PASMCs in hypoxia was reversed by treatment with JNK inhibitor. The findings indicate that P2X7R may be involved in the hypoxia-induced proliferation and phenotype switching of PASMCs via JNK signaling pathway, which suggests a new therapeutic strategy targeting P2X7R in vascular remodeling of pulmonary arterial hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

References

  1. Morin C, Hiram R, Rousseau E, Blier PU, Fortin S (2014) Docosapentaenoic acid monoacylglyceride reduces inflammation and vascular remodeling in experimental pulmonary hypertension. Am J Physiol Heart Circ Physiol 307(4):H574-586. https://doi.org/10.1152/ajpheart.00814.2013

    Article  CAS  PubMed  Google Scholar 

  2. Jeffery TK, Morrell NW (2002) Molecular and cellular basis of pulmonary vascular remodeling in pulmonary hypertension. Prog Cardiovasc Dis 45(3):173–202. https://doi.org/10.1053/pcad.2002.130041

    Article  CAS  PubMed  Google Scholar 

  3. Jin H, Wang Y, Zhou L, Liu L, Zhang P, Deng W, Yuan Y (2014) Melatonin attenuates hypoxic pulmonary hypertension by inhibiting the inflammation and the proliferation of pulmonaryarterial smooth muscle cells. J Pineal Res 57(4):442–450. https://doi.org/10.1111/jpi.12184

    Article  CAS  PubMed  Google Scholar 

  4. Stenmark KR, Fagan KA, Frid MG (2006) Hypoxia-induced pulmonary vascular remodeling:cellular and molecular mechanisms. Circ Res 99(7):675–691. https://doi.org/10.1161/01.RES.0000243584.45145.3f

    Article  CAS  PubMed  Google Scholar 

  5. Mitani Y, Ueda M, Komatsu R, Maruyama K, Nagai R, Matsumura M, Sakurai M (2001) Vascular smooth muscle cell phenotypes in primary pulmonary hypertension. Eur Respir J 17(2):316–320

    Article  CAS  Google Scholar 

  6. Liu M, Gomez D (2019) Smooth muscle cell phenotypic diversity. Arterioscler Thromb Vasc Biol 39(9):1715–1723. https://doi.org/10.1161/ATVBAHA.119.312131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yu H, Jia Q, Feng X, Chen H, Wang L, Ni X, Kong W (2017) Hypoxia decrease expression of cartilage oligomeric matrix protein to promote phenotype switching of pulmonary arterialsmooth muscle cells. Int J Biochem Cell Biol 91(Pt A):37–44. https://doi.org/10.1016/j.biocel.2017.08.007

    Article  CAS  PubMed  Google Scholar 

  8. Yu XM, Wang L, Li JF, Liu J, Li J, Wang W, Wang J, Wang C (2013) Wnt5a inhibits hypoxia-induced pulmonary arterial smooth muscle cell proliferation by downregulation of beta-catenin. Am J Physiol Lung Cell Mol Physiol 304(2):L103-111. https://doi.org/10.1152/ajplung.00070.2012

    Article  CAS  PubMed  Google Scholar 

  9. Raghavan A, Zhou G, Zhou Q, Ibe JC, Ramchandran R, Yang Q, Racherla H, RaychaudhuriP RJU (2012) Hypoxia-induced pulmonary arterial smooth muscle cell proliferation is controlled by forkhead box M1. Am J Respir Cell Mol Biol 46(4):431–436. https://doi.org/10.1165/rcmb.2011-0128OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Owens GK, Kumar MS, Wamhoff BR (2004) Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 84(3):767–801. https://doi.org/10.1152/physrev.00041.2003

    Article  CAS  PubMed  Google Scholar 

  11. Ma S, Motevalli SM, Chen J, Xu MQ, Wang Y, Feng J, Qiu Y, Han D, Fan M, Ding M, Fan L, Guo W, Liang XJ, Cao F (2018) Precise theranostic nanomedicines for inhibiting vulnerable atherosclerotic plaque progression through regulation of vascular smooth muscle cell phenotype switching. Theranostics 8(13):3693–3706. https://doi.org/10.7150/thno.24364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Khakh BS, North RA (2006) P2X receptors as cell-surface ATP sensors in health and disease. Nature 442(7102):527–532. https://doi.org/10.1038/nature04886

    Article  CAS  PubMed  Google Scholar 

  13. Muller T, Vieira RP, Grimm M, Durk T, Cicko S, Zeiser R, Jakob T, Martin SF, Blumenthal B, Sorichter S, Ferrari D, Di Virgillio F, Idzko M (2011) A potential role for P2X7R in allergic airway inflammation in mice and humans. Am J Respir Cell Mol Biol 44(4):456–464. https://doi.org/10.1165/rcmb.2010-0129OC

    Article  CAS  PubMed  Google Scholar 

  14. Aymeric L, Apetoh L, Ghiringhelli F, Tesniere A, Martins I, Kroemer G, Smyth MJ, Zitvogel L (2010) Tumor cell death and ATP release prime dendritic cells and efficient anticancer immunity. Cancer Res 70(3):855–858. https://doi.org/10.1158/0008-5472.CAN-09-3566

    Article  CAS  PubMed  Google Scholar 

  15. Di Virgilio F (2012) Purines, purinergic receptors, and cancer. Cancer Res 72(21):5441–5447. https://doi.org/10.1158/0008-5472.CAN-12-1600

    Article  CAS  PubMed  Google Scholar 

  16. Mishra A (2013) New insights of P2X7 receptor signaling pathway in alveolar functions. J Biomed Sci 20:26. https://doi.org/10.1186/1423-0127-20-26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nieber K, Eschke D, Brand A (1999) Brain hypoxia: effects of ATP and adenosine. Prog Brain Res 120:287–297

    Article  CAS  Google Scholar 

  18. Danton GH, Dietrich WD (2003) Inflammatory mechanisms after ischemia and stroke. J Neuropathol Exp Neurol 62(2):127–136

    Article  CAS  Google Scholar 

  19. Chiao CW, da Silva-Santos JE, Giachini FR, Tostes RC, Su MJ, Webb RC (2013) P2X7 receptor activation contributes to an initial upstream mechanism of lipopolysaccharide-induced vascular dysfunction. Clin Sci (Lond) 125(3):131–141. https://doi.org/10.1042/CS20120479

    Article  CAS  Google Scholar 

  20. Piscopiello M, Sessa M, Anzalone N, Castellano R, Maisano F, Ferrero E, Chiesa R, Alfieri O, Comi G, Ferrero ME, Foglieni C (2013) P2X7 receptor is expressed in human vessels and might play a role in atherosclerosis. Int J Cardiol 168(3):2863–2866. https://doi.org/10.1016/j.ijcard.2013.03.084

    Article  PubMed  Google Scholar 

  21. Gilbert SM, Oliphant CJ, Hassan S, Peille AL, Bronsert P, Falzoni S, Di Virgilio F, McNulty S, Lara R (2019) ATP in the tumour microenvironment drives expression of nfP2X7, a key mediator of cancer cell survival. Oncogene 38(2):194–208. https://doi.org/10.1038/s41388-018-0426-6

    Article  CAS  PubMed  Google Scholar 

  22. Takai E, Tsukimoto M, Harada H, Sawada K, Moriyama Y, Kojima S (2012) Autocrine regulation of TGF-beta1-induced cell migration by exocytosis of ATP and activation of P2 receptors in human lung cancer cells. J Cell Sci 125(Pt 21):5051–5060. https://doi.org/10.1242/jcs.104976

    Article  CAS  PubMed  Google Scholar 

  23. Gentile D, Lazzerini PE, Gamberucci A, Natale M, Selvi E, Vanni F, Ali A, Taddeucci P, Del-Ry S, Cabiati M, Della-Latta V, Abraham DJ, Morales MA, Fulceri R, Laghi-Pasini F, Capecchi PL (2017) Searching novel therapeutic targets for scleroderma: P2X7-receptor is up-regulated and promotes a fibrogenic phenotype in systemic sclerosis fibroblasts. Front Pharmacol 8:638. https://doi.org/10.3389/fphar.2017.00638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sullivan JA, Jankowska-Gan E, Shi L, Roenneburg D, Hegde S, Greenspan DS, Wilkes DS, Denlinger LC, Burlingham WJ (2014) Differential requirement for P2X7R function in IL-17 dependent vs. IL-17 independent cellular immune responses. Am J Transplant 14(7):1512–1522. https://doi.org/10.1111/ajt.12741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hautefort A, Girerd B, Montani D, Cohen-Kaminsky S, Price L, Lambrecht BN, Humbert M, Perros F (2015) T-helper 17 cell polarization in pulmonary arterial hypertension. Chest 147(6):1610–1620. https://doi.org/10.1378/chest.14-1678

    Article  PubMed  Google Scholar 

  26. Yin J, You S, Liu H, Chen L, Zhang C, Hu H, Xue M, Cheng W, Wang Y, Li X, Shi Y, Li N, Yan S, Li X (2017) Role of P2X7R in the development and progression of pulmonary hypertension. Respir Res 18(1):127. https://doi.org/10.1186/s12931-017-0603-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Song S, Wang S, Ma J, Yao L, Xing H, Zhang L, Liao L, Zhu D (2013) Biliverdinreducn mediates the anti-apoptotic effect of hypoxia in pulmonary arterial smooth muscle cells through ERK1/2 pathway. Exp Cell Res 319(13):1973–1987. https://doi.org/10.1016/j.yexcr.2013.05.015

    Article  CAS  PubMed  Google Scholar 

  28. Guo L, Tang X, Tian H, Liu Y, Wang Z, Wu H, Wang J, Guo S, Zhu D (2008) Subacutehypoxia suppresses Kv3.4 channel expression and whole-cell K+ currents through endogenous 15-hydroxyeicosatetraenoic acid in pulmonary arterial smooth muscle cells. Eur J Pharmacol 587(1–3):187–195. https://doi.org/10.1016/j.ejphar.2008.02.031

    Article  CAS  PubMed  Google Scholar 

  29. Nurkhametova D, Kudryavtsev I, Guselnikova V, Serebryakova M, Giniatullina RR, Wojciechowski S, Tore F, Rizvanov A, Koistinaho J, Malm T, Giniatullin R (2019) Activation of P2X7 receptors in peritoneal and meningeal mast cells detected by uptake of organic dyes: possible purinergic triggers of neuroinflammation in meninges. Front Cell Neurosci 13:45. https://doi.org/10.3389/fncel.2019.00045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xu XY, He XT, Wang J, Li X, Xia Y, Tan YZ, Chen FM (2019) Role of the P2X7 receptor in inflammation-mediated changes in the osteogenesis of periodontal ligament stem cells. Cell Death Dis 10(1):20. https://doi.org/10.1038/s41419-018-1253-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mantione ME, Lombardi M, Baccellieri D, Ferrara D, Castellano R, Chiesa R, Alfieri O, Foglieni C (2019) IL-1beta/MMP9 activation in primary human vascular smooth muscle-like cells: exploring the role of TNFalpha and P2X7. Int J Cardiol 278:202–209. https://doi.org/10.1016/j.ijcard.2018.12.047

    Article  PubMed  Google Scholar 

  32. Wei L, Liu Y, Kaneto H, Fanburg BL (2010) JNK regulates serotonin-mediated proliferation and migration of pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 298(6):L863–L869. https://doi.org/10.1152/ajplung.00281.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang C, Ma C, Zhang L, Zhang L, Zhang F, Ma M, Zheng X, Mao M, Shen T, Zhu D (2019) MiR-449a-5p mediates mitochondrial dysfunction and phenotypic transition by targeting Myc in pulmonary arterial smooth muscle cells. J Mol Med (Berl) 97(3):409–422. https://doi.org/10.1007/s00109-019-01751-7

    Article  CAS  Google Scholar 

  34. Solini A, Novak I (2019) Role of the P2X7 receptor in the pathogenesis of type 2 diabetes and its microvascular complications. Curr Opin Pharmacol 47:75–81. https://doi.org/10.1016/j.coph.2019.02.009

    Article  CAS  PubMed  Google Scholar 

  35. Alexander MR, Owens GK (2012) Epigenetic control of smooth muscle cell differentiation and phenotypic switching in vascular development and disease. Annu Rev Physiol 74:13–40. https://doi.org/10.1146/annurev-physiol-012110-142315

    Article  CAS  PubMed  Google Scholar 

  36. Weston CR, Davis RJ (2002) The JNK signal transduction pathway. Curr Opin Genet Dev 12(1):14–21

    Article  CAS  Google Scholar 

  37. Qian Z, Li Y, Chen J, Li X, Gou D (2017) miR-4632 mediates PDGF-BB-induced proliferation and antiapoptosis of human pulmonary artery smooth muscle cells via targeting cJUN. Am J Physiol Cell Physiol 313(4):C380–C391. https://doi.org/10.1152/ajpcell.00061.2017

    Article  CAS  PubMed  Google Scholar 

  38. Zhao D, Li J, Xue C, Feng K, Liu L, Zeng P, Wang X, Chen Y, Li L, Zhang Z, Duan Y, Han J, Yang X (2020) TL1A inhibits atherosclerosis in apoE-deficient mice by regulating the phenotype of vascular smooth muscle cells. J Biol Chem 295(48):16314–16327. https://doi.org/10.1074/jbc.RA120.015486

    Article  CAS  PubMed  Google Scholar 

  39. Duan L, Hu GH, Li YJ, Zhang CL, Jiang M (2018) P2X7 receptor is involved in lung injuries induced by ischemia-reperfusion in pulmonary arterial hypertension rats. Mol Immunol 101:409–418. https://doi.org/10.1016/j.molimm.2018.07.027

    Article  CAS  PubMed  Google Scholar 

  40. Liu R, Leslie KL, Martin KA (1849) (2015) Epigenetic regulation of smooth muscle cell plasticity. Biochim Biophys Acta 4:448–453. https://doi.org/10.1016/j.bbagrm.2014.06.004

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Natural Science Foundation of China (Grant No. 81200011) and Post-doctoral Foundation of Heilongjiang Province (Grant No. LBH-Q15081) and Foundation of Harbin Medical University-Daqing (Grant No. DSJJ2019001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuqin Ni.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Hu, B., Wang, L. et al. P2X7 receptor-mediated phenotype switching of pulmonary artery smooth muscle cells in hypoxia. Mol Biol Rep 48, 2133–2142 (2021). https://doi.org/10.1007/s11033-021-06222-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06222-2

Keywords

Navigation