Skip to main content
Log in

Evaluating the effect of a mixture of two main conjugated linoleic acid isomers on hepatic steatosis in HepG2 cellular model

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Hepatic steatosis is an early form of non-alcoholic fatty liver disease (NAFLD), caused by abnormal fat deposition in the hepatocytes. Conjugated linoleic acid (CLA) is a group of positional and geometric dienoic isomers of linoleic acid that attract significant attention because of its beneficial effects on chronic diseases such as cancer, obesity, and metabolic syndrome. This study examined the influence of a mixture of two main CLA isomers (CLA-mix) on lipid accumulation and lipid metabolism-related genes using HepG2 cells treated with palmitic acid (PA) as an in vitro model for hepatic steatosis. Methods and Results: HepG2 cells were treated for 24 h: control (BSA), model (BSA + PA), and treated groups (BSA-PA + non-toxic concentrations of CLA-mix). Intracellular lipid deposition, triglyceride (TG), total cholesterol (TC) and gene expression were measured by Oil-Red O staining, colorimetric assay kits and real-time PCR, respectively. CLA-mix at high concentrations had significantly decreased intracellular total lipid and TG deposition compared to the model group. However, none of the CLA-mix concentrations had a significant effect on the intracellular TC level. CLA-mix significantly increased the expression of some genes mainly regulated by PPARα but did not alter the expression of lipogenesis-related genes. Conclusions: These results demonstrate that high concentrations of CLA-mix protect against hepatic steatosis and play a role in regulating fatty acid oxidation and bile excretion through the PPARα pathway. It is suggested that the effect of different ratios of two main CLA isomers on the amount and ratio of bile compounds be investigated in future studies.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data of this study are included in the article and the primary data can be provided from the corresponding author.

Abbreviations

ACC:

Acetyl-CoA carboxylase

AA:

Arachidonic acid

ABCG8:

ATP binding cassette subfamily G member 8

BA:

Bile acid

BSEP:

Bile salt export pump

BSA:

Bovine serum albumin

CPT-1:

Carnitine palmitoyltransferase-I:

Chol:

Cholesterol

CAA:

Conjugated arachidonic acid

CLA:

Conjugated linoleic acid

FXR:

Farnesoid X receptor

FABP:

Fatty acid-binding protein

FAS:

Fatty acid synthase

FFA:

Free fatty acid

Glc:

Glucose

Gly:

Glycerol

HMGCR:

3-Hydroxy-3methyl-glutaryl-coenzyme A reductase

HMGCS2:

3-Hydroxy-3-methylglutaryl-coa synthase 2

LA:

Linoleic acid

LPL:

Lipoprotein lipase

LXRα:

Liver X receptor alpha

MDR3:

Multidrug resistance protein 3

NAFLD:

Non-alcoholic fatty liver disease

NASH:

Non-alcoholic steatohepatitis

OA:

Oleic acid

PA:

Palmitic acid

ACOX1:

Peroxisomal acyl-coenzyme A oxidase1

α:

β, γ1, γ2, Peroxisome proliferator-activated receptors

PL:

Phospholipid

SA:

Stearic acid

SREBP-1c:

Sterol-regulatory element binding protein-1c

TG:

Triglyceride

TC:

Total cholesterol

UCP:

Uncoupling protein

VLDL:

Very low density lipoprotein

References

  1. Sinton MC, Hay DC, Drake AJ (2019) Metabolic control of gene transcription in non-alcoholic fatty liver disease: the role of the epigenome. Clin Epigenetics 11(1):104. https://doi.org/10.1186/s13148-019-0702-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pierantonelli I, Svegliati-Baroni G (2019) Nonalcoholic fatty liver disease: basic pathogenetic mechanisms in the progression from NAFLD to NASH. Transplantation 103(1):e1–e13

    CAS  PubMed  Google Scholar 

  3. Lopez-Velazquez JA, Silva-Vidal KV, Ponciano-Rodriguez G, Chávez-Tapia NC, Arrese M, Uribe M, Méndez-Sánchez N (2014) The prevalence of nonalcoholic fatty liver disease in the Americas. Ann hepatol 13(2):166–178

    CAS  PubMed  Google Scholar 

  4. Oseini AM, Sanyal AJ (2017) Therapies in non-alcoholic steatohepatitis (NASH). Liver Int 37(Suppl 1):97–103. https://doi.org/10.1111/liv.13302

    Article  PubMed  PubMed Central  Google Scholar 

  5. Churruca I, Fernández-Quintela A, Portillo MP (2009) Conjugated linoleic acid isomers: differences in metabolism and biological effects. BioFactors 35(1):105–111

    CAS  PubMed  Google Scholar 

  6. Banni S (2002) Conjugated linoleic acid metabolism. CurrOpinLipidol 13(3):261–266

    CAS  Google Scholar 

  7. Chinnadurai K, Tyagi A (2011) Conjugated linoleic acid: a milk fatty acid with unique health benefit properties. Soybean and Health, 111

  8. Kim JH, Kim Y, Kim YJ, Park Y (2016) Conjugated linoleic acid: potential health benefits as a functional food ingredient. Ann Rev Food SciTechnol 7:221–244

    CAS  Google Scholar 

  9. den Hartigh LJ (2019) Conjugated linoleic acid effects on cancer, obesity, and atherosclerosis: a review of pre-clinical and human trials with current perspectives. Nutrients 11(2):370

    Google Scholar 

  10. Whigham LD, Watras AC, Schoeller DA (2007) Efficacy of conjugated linoleic acid for reducing fat mass: a meta-analysis in humans. Am J clinNutr 85(5):1203–1211

    CAS  Google Scholar 

  11. Tsuboyama-Kasaoka N, Takahashi M, Tanemura K, Kim H-J, Tange T, Okuyama H, Kasai M, Ikemoto S, Ezaki O (2000) Conjugated linoleic acid supplementation reduces adipose tissue by apoptosis and develops lipodystrophy in mice. Diabetes 49(9):1534–1542

    CAS  PubMed  Google Scholar 

  12. Clément L, Poirier H, Niot I, Bocher V, Guerre-Millo M, Krief S, Staels B, Besnard P (2002) Dietary trans-10, cis-12 conjugated linoleic acid induces hyperinsulinemia and fatty liver in the mouse. J Lipid Res 43(9):1400–1409

    PubMed  Google Scholar 

  13. Macarulla MT, Fernández-Quintela A, Zabala A, Navarro V, Echevarría E, Churruca I, Rodríguez VM, Portillo MPJN (2005) Effects of conjugated linoleic acid on liver composition and fatty acid oxidation are isomer-dependent in hamster. Nutrition 21(4):512–519

    CAS  PubMed  Google Scholar 

  14. Purushotham A, Shrode GE, Wendel AA, Liu L-F, Belury MA (2007) Conjugated linoleic acid does not reduce body fat but decreases hepatic steatosis in adult wistar rats. J NutrBiochem 18(10):676–684

    CAS  Google Scholar 

  15. Noto A, Zahradka P, Yurkova N, Xie X, Nitschmann E, Ogborn M, Taylor CG (2006) Conjugated linoleic acid reduces hepatic steatosis, improves liver function, and favorably modifies lipid metabolism in obese insulin-resistant rats. Lipids 41(2):179–188

    CAS  PubMed  Google Scholar 

  16. Nakamura YK, Flintoff-Dye N, Omaye ST (2008) Conjugated linoleic acid modulation of risk factors associated with atherosclerosis. Nutrmetab 5(1):22

    Google Scholar 

  17. Belury MA (2002) Dietary conjugated linoleic acid in health: physiological effects and mechanisms of action. Annu Rev Nutr 22(1):505–531

    CAS  PubMed  Google Scholar 

  18. Piras A, Carta G, Murru E, Lopes PA, Martins SV, Prates JA, Banni S (2015) Effects of dietary CLA on n-3 HUFA score and N-acylethanolamides biosynthesis in the liver of obese zucker rats. Prostaglandins LeukotEssent Fatty Acids 98:15–19

    CAS  Google Scholar 

  19. Cao P, Huang G, Yang Q, Guo J, Su Z (2016) The effect of chitooligosaccharides on oleic acid-induced lipid accumulation in HepG2 cells. Saudi Pharm J 24(3):292–298

    PubMed  PubMed Central  Google Scholar 

  20. Iida KT, Kawakami Y, Suzuki H, Sone H, Shimano H, Toyoshima H, Okuda Y, Yamada N (2002) PPARγ ligands, troglitazone and pioglitazone, up-regulate expression of HMG-CoA synthase and HMG-CoA reductase gene in THP-1 macrophages. FEBS Lett 520(1–3):177–181

    CAS  PubMed  Google Scholar 

  21. Wobser H, Dorn C, Weiss TS, Amann T, Bollheimer C, Büttner R, Schölmerich J, Hellerbrand C (2009) Lipid accumulation in hepatocytes induces fibrogenic activation of hepatic stellate cells. Cell Res 19(8):996–1005

    CAS  PubMed  Google Scholar 

  22. Corbett JL, Duncan SA (2019) iPSC-Derived Hepatocytes as a Platform for Disease Modeling and Drug Discovery. Front Med. https://doi.org/10.3389/fmed.2019.00265

    Article  Google Scholar 

  23. Yanagita T, Han S-Y, Hu Y, Nagao K, Kitajima H, Murakami S (2008) Taurine reduces the secretion of apolipoprotein B100 and lipids in HepG2 cells. Lipids Health Dis 7(1):38

    PubMed  PubMed Central  Google Scholar 

  24. Wang N, Kong R, Luo H, Xu X, Lu J (2017) Peroxisome proliferator-activated receptors associated with nonalcoholic fatty liver disease. PPAR Res 2017:1–8

    Google Scholar 

  25. Lehnen TE, da Silva MR, Camacho A, Marcadenti A, Lehnen AM (2015) A review on effects of conjugated linoleic fatty acid (CLA) upon body composition and energetic metabolism. J IntSoc Sports Nutr 12(1):1–11

    CAS  Google Scholar 

  26. Hagen RM, Rhodes A, Ladomery MR (2013) Conjugated linoleate reduces prostate cancer viability whereas the effects of oleate and stearate are cell line-dependent. Anticancer Res 33(10):4395–4400

    CAS  PubMed  Google Scholar 

  27. Bhatia A, Sharma A, Balgir PP, Kapoor D (2015) Anti-cancerous effect of linoleic acid and conjugated linoleic acid on hepatic cancer cells and histocytic lymphoma cells: In vitro. AdvApplSci Res 6(4):114–117

    CAS  Google Scholar 

  28. Melaku A, Kadir AA, Othman F, Meng GY, Sazili A (2012) Cytotoxic effects of conjugated linoleic acids on human hepatoma cancer cells (HepG2). J MolPathophysiol 1(1):43–48

    Google Scholar 

  29. Igarashi M, Miyazawa T (2000) Newly recognized cytotoxic effect of conjugated trienoic fatty acids on cultured human tumor cells. Cancer Lett 148(2):173–179

    CAS  PubMed  Google Scholar 

  30. Kineman RD, Majumdar N, Subbaiah PV, Cordoba-Chacon J (2016) Hepatic PPARγ is not essential for the rapid development of steatosis after loss of hepatic GH signaling, in adult male mice. Endocrinology 157(5):1728–1735

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Dozsa A, Dezso B, Toth BI, Bacsi A, Poliska S, Camera E, Picardo M, Zouboulis CC, Bíró T, Schmitz G (2014) PPARγ-mediated and arachidonic acid-dependent signaling is involved in differentiation and lipid production of human sebocytes. J InvestigDermatol 134(4):910–920

    CAS  Google Scholar 

  32. Urquhart P, Parkin SM, Rogers JS, Bosley JA, Nicolaou A (2002) The effect of conjugated linoleic acid on arachidonic acid metabolism and eicosanoid production in human saphenous vein endothelial cells. BiochimBiophysActa (BBA) 1580(2–3):150–160

    CAS  Google Scholar 

  33. House RL, Cassady JP, Eisen EJ, Eling TE, Collins JB, Grissom SF, Odle J (2005) Functional genomic characterization of delipidation elicited by trans-10, cis-12-conjugated linoleic acid (t10c12-CLA) in a polygenic obese line of mice. PhysiolGenom 21(3):351–361

    CAS  Google Scholar 

  34. Granlund L, Juvet LK, Pedersen JI, Nebb HI (2003) Trans10, cis12-conjugated linoleic acid prevents triacylglycerol accumulation in adipocytes by acting as a PPARγ modulator. J Lipid Res 44(8):1441–1452

    CAS  PubMed  Google Scholar 

  35. Gavrilova O, Haluzik M, Matsusue K, Cutson JJ, Johnson L, Dietz KR, Nicol CJ, Vinson C, Gonzalez FJ, Reitman ML (2003) Liver peroxisome proliferator-activated receptor γ contributes to hepatic steatosis, triglyceride clearance, and regulation of body fat mass. J BiolChem 278(36):34268–34276

    CAS  Google Scholar 

  36. Lee YK, Park JE, Lee M, Hardwick JP (2018) Hepatic lipid homeostasis by peroxisome proliferator-activated receptor gamma 2. Liver Res 2(4):209–215

    PubMed  PubMed Central  Google Scholar 

  37. Maslak E, Buczek E, Szumny A, Szczepnski W, Franczyk-Zarow M, Kopec A, Chlopicki S, Leszczynska T, Kostogrys RB (2015) Individual CLA isomers, c9t11 and t10c12, prevent excess liver glycogen storage and inhibit lipogenic genes expression induced by high-fructose diet in rats. Biomed Res Int 2015:1–10

    Google Scholar 

  38. Go G-W, Oh S, Park M, Gang G, McLean D, Yang H-S, Song M-H, Kim Y (2013) t10, c12 conjugated linoleic acid upregulates hepatic de novo lipogenesis and triglyceride synthesis via mTOR pathway activation. J MicrobiolBiotechnol 23(11):1569–1576

    CAS  Google Scholar 

  39. Greene ES, Rodriguez-Sallaberry C, Caldari-Torres C, Badinga L (2006) Effects of conjugated linoleic acids on lipid metabolizing genes and high-density lipoprotein cholesterol production in human hepatocytes. J Appl Res ClinExpTher 6(2):132

    CAS  Google Scholar 

  40. Yu S, Matsusue K, Kashireddy P, Cao W-Q, Yeldandi V, Yeldandi AV, Rao MS, Gonzalez FJ, Reddy JK (2003) Adipocyte-specific gene expression and adipogenicsteatosis in the mouse liver due to peroxisome proliferator-activated receptor γ1 (PPARγ1) overexpression. J BiolChem 278(1):498–505

    CAS  Google Scholar 

  41. Montagner A, Polizzi A, Fouché E, Ducheix S, Lippi Y, Lasserre F, Barquissau V, Régnier M, Lukowicz C, Benhamed F (2016) Liver PPARα is crucial for whole-body fatty acid homeostasis and is protective against NAFLD. Gut 65(7):1202–1214

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Armstrong MB, Towle HC (2001) Polyunsaturated fatty acids stimulate hepatic UCP-2 expression via a PPARα-mediated pathway. Am J Physiol-EndocrinolMetab 281(6):E1197–E1204

    CAS  Google Scholar 

  43. Moya Camarena SY (1998) Evidence for a peroxisome proliferator-activated receptor (PPAR)-mediated mechanism for conjugated linoleic acid (CLA)

  44. Moya-Camarena SY, Heuvel JPV, Belury MA (1999) Conjugated linoleic acid activates peroxisome proliferator-activated receptor α and β subtypes but does not induce hepatic peroxisome proliferation in Sprague–Dawley rats. BiochimBiophysActa (BBA) 1436(3):331–342

    CAS  Google Scholar 

  45. Zhao A, Yu J, Lew J-L, Huang L, Wright SD, Cui J (2004) Polyunsaturated fatty acids are FXR ligands and differentially regulate expression of FXR targets. DNA Cell Biol 23(8):519–526

    CAS  PubMed  Google Scholar 

  46. Shoda J, Inada Y, Tsuji A, Kusama H, Ueda T, Ikegami T, Suzuki H, Sugiyama Y, Cohen DE, Tanaka N (2004) Bezafibrate stimulates canalicular localization of NBD-labeled PC in HepG2 cells by PPARα-mediated redistribution of ABCB4. J Lipid Res 45(10):1813

    CAS  PubMed  Google Scholar 

  47. Washington MK (2009) Gallbladder and extrahepatic bile ducts. Modern surgical pathology. Elsevier, Amsterdam, pp 960–975

    Google Scholar 

  48. Gustafsson U, Benthin L, Granström L, Groen AK, Sahlin S, Einarsson C (2005) Changes in gallbladder bile composition and crystal detection time in morbidly obese subjects after bariatric surgery. Hepatology 41(6):1322–1328

    PubMed  Google Scholar 

  49. St.George CM, Russell JC, Shaffer EA (1994) Effects of obesity on bile formation and biliary lipid secretion in the genetically obese JCR: LA-corpulent rat. Hepatology 20(6):1541–1547

    CAS  PubMed  Google Scholar 

  50. Rahman SM, Huda MN, Uddin MN, Akhteruzzaman S (2002) Short-term administration of conjugated linoleic acid reduces liver triglyceride concentration and phosphatidatephosphohydrolase activity in OLETF rats. BMB Rep 35(5):494–497

    CAS  Google Scholar 

Download references

Acknowledgements

This experimental study was part of a Ph.D. program and supported by a grant from the Tehran University of Medical Sciences (TUMS Grant Number: 96-02-30-35441).

Funding

This project was financially supported by grant (TUMS Grant Number: 96-02-30-35441) from the Deputy of Research, Tehran University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Contributions

AJ, MP and TG designed the project. AJ carried out all experiments and wrote the manuscript. MP provided all the required materials and advice about this study. TG provided valuable instructions and suggestions for this study. RM Helpful and effective tips during project implementation. NE helped for cell culture and optimizing of MTT assay. RB helped for optimizing of Oil Red assay and TG & TC measurements. MK helped for optimizing real-time PCR and analysis of data. SRH helped in editing the manuscript and designing the schematic image. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Taghi Golmohammadi or Maliheh Paknejad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

All the authors have consented to the publication of this article.

Research involving human participants and/or animals

There are no humans or animals included in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 146 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jalilian, A., Golmohammadi, T., Meshkani, R. et al. Evaluating the effect of a mixture of two main conjugated linoleic acid isomers on hepatic steatosis in HepG2 cellular model. Mol Biol Rep 48, 1359–1370 (2021). https://doi.org/10.1007/s11033-021-06203-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06203-5

Keywords

Navigation