Skip to main content
Log in

Chronic stress decreases ornithine decarboxylase expression and protects against 1,2-dimethylhydrazine-induced colon carcinogenesis

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Biological response to stress depends on the type, timing, and severity of the stressor. Acute stressful environments may positively activate molecular and cellular mechanisms to favor adaptation; however, chronic stress is often associated with detrimental health effects. Colon cancer (CC) is one of the leading causes of death associated with cancer and has been mentioned as a stress-related disease. In the present work, the effect of chronic stress on the initial phase of CC was evaluated, and special emphasis was placed on ornithine decarboxylase (ODC) expression and polyamines for their role in hyperproliferative diseases. BALB/c mice (n = 5/group) were administered the pro-carcinogen 1,2-dimethylhydrazine (DMH) for 8 weeks (20 mg/kg body weight/week) to induce colon carcinogenesis, and then exposed for 4 weeks to two physical stressors: restraint and forced-swimming. Distal colon inflammatory lesions and histomorphological changes were evaluated by hematoxylin–eosin staining; plasma corticosterone levels, colon ODC expression, and urinary polyamines were determined by competitive ELISA, RT-qPCR, Western Blot, and HPLC, respectively. The short-term exposure to DMH triggered colon inflammation, initiated colon carcinogenesis and increased ODC expression; meanwhile, the exposure to chronic stress activated the hypothalamic–pituitary–adrenal (HPA) axis, elicited the production of plasmatic corticosterone, and decreased ODC expression. The exposure of DMH-treated mice to chronic stress counteracted the inflammatory effect of DMH and maintained ODC homeostasis. In early phase of carcinogenesis, the exposure of DMH-treated mice to chronic stress had a positive effect against colon inflammation and maintained ODC homeostasis. The cross-talk between corticosterone, ODC expression, and inflammation in a tumor environment is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availiability

Data are available upon request.

References

  1. Mawdsley JE, Rampton DS (2005) Psychological stress in IBD: new insights into pathogenic and therapeutic implications. Gut 54(10):1481–1491. https://doi.org/10.1136/gut.2005.064261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. De la Roca-Chiapas JM, Barbosa-Sabanero G, Martínez-García JA, Martínez-Soto J, Ramos Frausto VM, González-Ramírez LP, Nowack K (2016) Impact of stress and levels of corticosterone on the development of breast cancer in rats. Psychol Res Behav Manag 9:1–6. https://doi.org/10.2147/PRBM.S94177

    Article  PubMed  PubMed Central  Google Scholar 

  3. Galluzzi L, Yamazaki T, Kroemer G (2018) Linking cellular stress responses to systemic homeostasis. Nat Rev Mol Cell Biol 19(11):731–745. https://doi.org/10.1038/s41580-018-0068-0

    Article  CAS  PubMed  Google Scholar 

  4. Kruk J, Aboul-Enein BH, Bernstein J, Gronostaj M (2019) Psychological stress and cellular aging in cancer: a meta-analysis. Oxid Med Cell Longev 2019:1270397. https://doi.org/10.1155/2019/1270397

    Article  PubMed  PubMed Central  Google Scholar 

  5. La Vecchia S, Sebastián C (2020) Metabolic pathways regulating colorectal cancer initiation and progression. Semin Cell Dev Biol 98:63–70. https://doi.org/10.1016/j.semcdb.2019.05.018

    Article  CAS  PubMed  Google Scholar 

  6. Denaro N, Tomasello L, Russi E (2014) Cancer and stress: what’s matter? From epidemiology: the psychologist and oncologist point of view. J Cancer Ther Res 3:6. https://doi.org/10.7243/2049-7962-3-6

    Article  Google Scholar 

  7. Kikuchi N, Nishiyama T, Sawada T, Wang C, Lin Y, Watanabe Y, Tamakoshi A, Kikuchi S (2017) Perceived stress and colorectal cancer incidence: the Japan collaborative cohort study. Sci Rep 7:40363. https://doi.org/10.1038/srep40363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Baritaki S, de Bree E, Chatzaki E, Pothoulakis C (2019) Chronic stress, inflammation, and colon cancer: a CRH system-driven molecular crosstalk. J Clin Med 8(10):1669. https://doi.org/10.3390/jcm8101669

    Article  CAS  PubMed Central  Google Scholar 

  9. Moreno-Smith M, Lutgendorf SK, Sood AK (2010) Impact of stress on cancer metastasis. Future Oncol (London, England) 6(12):1863–1881. https://doi.org/10.2217/fon.10.142

    Article  Google Scholar 

  10. Rossi G, Cerquetella M, Pengo G, Mari S, Balint E, Bassotti G, Manolescu N (2015) Immunohistochemical expression of ornithine decarboxylase, diamine oxidase, putrescine, and spermine in normal canine enterocolic mucosa, in chronic colitis, and in colorectal cancer. Biomed Res Int 2015:172756. https://doi.org/10.1155/2015/172756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cho KR, Vogelstein B (1992) Genetic alterations in the adenoma—carcinoma sequence. Cancer 70(6 Suppl):1727–1731. https://doi.org/10.1002/1097-0142(19920915)70:4+%3c1727::aid-cncr2820701613%3e3.0.co;2-p

    Article  CAS  PubMed  Google Scholar 

  12. Rao JN, Wang JY (2010) Regulation of gastrointestinal mucosal growth. San Rafael (CA): Morgan and Claypool life sciences. Polyamines in the regulation of mucosal growth. Available from: https://www.ncbi.nlm.nih.gov/books/NBK54101

  13. Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61(5):759–767. https://doi.org/10.1016/0092-8674(90)90186-i

    Article  CAS  PubMed  Google Scholar 

  14. De-Souza ASC, Costa-Casagrande TA (2018) Animal models for colorectal cancer. Arq Bras Cir Dig 31(2):e1369. https://doi.org/10.1590/0102-672020180001e1369

    Article  PubMed  PubMed Central  Google Scholar 

  15. Irecta-Nájera CA, Huizar-López MDR, Casas-Solís J, Castro-Félix P, Santerre A (2017) Protective effect of Lactobacillus casei on DMH-induced colon carcinogenesis in mice. Probiotics Antimicrob Proteins 9(2):163–171. https://doi.org/10.1007/s12602-017-9253-2

    Article  CAS  PubMed  Google Scholar 

  16. Casas-Solís J, Huizar-López MDR, Irecta-Nájera CA, Pita-López ML, Santerre A (2019) Immunomodulatory effect of Lactobacillus casei in a murine model of colon carcinogenesis. Probiotics Antimicrob Proteins 12:1012–1024. https://doi.org/10.1007/s12602-019-09611-z

    Article  CAS  Google Scholar 

  17. Greene FL, Lamb LS, Barwick M (1987) Colorectal cancer in animal models—a review. J Surg Res 43(5):476–487. https://doi.org/10.1016/0022-4804(87)90107-7

    Article  CAS  PubMed  Google Scholar 

  18. Venkatachalam K, Vinayagam R, Anand MAV, Isa NM, Ponnaiyan R (2020) Biochemical and molecular aspects of 1,2-dimethylhydrazine (DMH)-induced colon carcinogenesis: a review. Toxicol Res 9(1):2–18. https://doi.org/10.1093/toxres/tfaa004

    Article  Google Scholar 

  19. Perše M, Cerar A (2011) Morphological and molecular alterations in 1,2 dimethylhydrazine and azoxymethane induced colon carcinogenesis in rats. J Biomed Biotechnol. https://doi.org/10.1155/2011/473964

    Article  PubMed  Google Scholar 

  20. Agostinelli E (2020) Biochemical and pathophysiological properties of polyamines. Amino Acids 52:111–117. https://doi.org/10.1007/s00726-020-02821-8

    Article  CAS  PubMed  Google Scholar 

  21. Casero RA Jr, Murray Stewart T, Pegg AE (2018) Polyamine metabolism and cancer: treatments, challenges and opportunities. Nat Rev Cancer 18(11):681–695. https://doi.org/10.1038/s41568-018-0050-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Timmons J, Chang ET, Wang JY, Rao JN (2012) Polyamines and gut mucosal homeostasis. J Gastrointest Dig Syst 2(Suppl 7):001 (PMID: 25237589)

    PubMed  PubMed Central  Google Scholar 

  23. Zamora-González EO, Santerre A, Palomera-Avalos V, Morales-Villagrán A (2013) A chronic combinatory stress model that activates the HPA axis and avoids habituation in BALB/C mice. J Neurosci Methods 213(1):70–75. https://doi.org/10.1016/j.jneumeth.2012.10.015

    Article  CAS  PubMed  Google Scholar 

  24. Mexican Official Norms (2001) NOM-062-ZOO-1999, Secretaria de Agricultura Ganadería, Desarrollo Rural, Pesca y Alimentación: Especificaciones técnicas para la producción, cuidado y uso de animales de laboratorio, Edited by Diario Oficial de la Federación

  25. Prophet E, Mills B, Arrington J, Sobin L (1995) Métodos Histotecnológicos. Instituto de Patología de las Fuerzas Armadas de los Estados Unidos de América (AFIP). Washington, DC, USA

  26. Kohoutova D, Pejchal J, Bures J (2018) Mitotic and apoptotic activity in colorectal neoplasia. BMC Gastroenterol 18(1):65. https://doi.org/10.1186/s12876-018-0786-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rubio CA (2017) Corrupted colonic crypt fission in carcinogen-treated rats. PLoS ONE 12(3):e0172824. https://doi.org/10.1371/journal.pone.0172824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zar JH (1999) Biostatistical analysis, 4th edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  29. Blachier F, Beaumont M, Andriamihaja M, Davila AM, Lan A, Grauso M, Armand L, Benamouzig R, Tomé D (2017) Changes in the luminal environment of the colonic epithelial cells and physiopathological consequences. Am J Pathol 187(3):476–486. https://doi.org/10.1016/j.ajpath.2016.11.015

    Article  CAS  PubMed  Google Scholar 

  30. Singh K, Coburn LA, Asim M, Barry DP, Allaman MM, Shi C, Washington MK, Luis PB, Schneider C, Delgado AG, Piazuelo MB, Cleveland JL, Gobert AP, Wilson KT (2018) Ornithine decarboxylase in macrophages exacerbates colitis and promotes colitis-associated colon carcinogenesis by impairing M1 immune responses. Cancer Res 78:4303–4315. https://doi.org/10.1158/0008-5472.CAN-18-0116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hayes CS, Burns MR, Gilmour SK (2014) Polyamine blockade promotes antitumor immunity. Oncoimmunology 3(1):e27360. https://doi.org/10.4161/onci.27360

    Article  PubMed  PubMed Central  Google Scholar 

  32. Babbar N, Gerner EW (2011) Targeting polyamines and inflammation for cancer prevention. Recent Results Cancer Res 188:49–64. https://doi.org/10.1007/978-3-642-10858-7_4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fu S, Xiao C, Zhao W, Yu X (2012) Polyamines analysis by HPLC and their application as tumor markers. Front Biosci (Elite Ed) 4:1795–1801. https://doi.org/10.2741/500

    Article  Google Scholar 

  34. Milovic V, Turchanowa L (2003) Polyamines and colon cancer. Biochem Soc Trans 31(2):381–383. https://doi.org/10.1042/bst0310381

    Article  CAS  PubMed  Google Scholar 

  35. Damiani E, Wallace HM (2018) Polyamines and cancer. Methods Mol Biol 1694:469–488. https://doi.org/10.1007/978-1-4939-7398-9_39

    Article  CAS  PubMed  Google Scholar 

  36. Riedemann T, Patchev AV, Cho K, Almeida OF (2010) Corticosteroids: way upstream. Mol Brain 3:2. https://doi.org/10.1186/1756-6606-3-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. McEwen BS, Wingfield JC (2010) What is in a name? Integrating homeostasis, allostasis and stress. Horm Behav 57(2):105–111. https://doi.org/10.1016/j.yhbeh.2009.09.011

    Article  PubMed  Google Scholar 

  38. Ottenweller JE (2007) Animal models (nonprimate) for human stress. In: Fink G (ed) Encyclopedia of stress, 2nd edn. Academic Press, Cambridge , pp 190–195

    Chapter  Google Scholar 

  39. Kuhn CM, Grignolo A, Schanberg SM (1983) Ontogeny of stress effects on ornithine decarboxylase activity in rats. Pharmacol Biochem Behav 18(5):669–672. https://doi.org/10.1016/0091-3057(83)90003-5

    Article  CAS  PubMed  Google Scholar 

  40. Ning Q, Li C, Wei K, He J, Xu C, Shao Q (2007) Regulatory effects of corticosterone on ornithine decarboxylase activity during liver regeneration in rats. J Gastroenterol Hepatol 22(11):1978–1982. https://doi.org/10.1111/j.1440-1746.2006.04795.x

    Article  CAS  PubMed  Google Scholar 

  41. Distelhorst C (2002) Recent insights into the mechanism of glucocorticosteroid-induced apoptosis. Cell Death Differ 9:6–19. https://doi.org/10.1038/sj.cdd.4400969

    Article  CAS  PubMed  Google Scholar 

  42. Thompson EB (1998) The many roles of c-Myc in apoptosis. Annu Rev Physiol 60:575–600. https://doi.org/10.1146/annurev.physiol.60.1.575

    Article  CAS  PubMed  Google Scholar 

  43. Grassilli E, Benatti F, Dansi P, Giammarioli AM, Malorni W, Franceschi C, Desiderio MA (1998) Inhibition of proteasome function prevents thymocyte apoptosis: involvement of ornithine decarboxylase. Biochem Biophys Res Commun 250(2):293–297. https://doi.org/10.1006/bbrc.1998.9291

    Article  CAS  PubMed  Google Scholar 

  44. Ma JM, Yang H, Dong JF, Ning QJ, Li JK (2011) The influence of corticosterone on antizyme gene expression in early regenerating rat liver. Acta Gastroenterol Belg 74(2):289–294 (PMID: 21861313)

    CAS  PubMed  Google Scholar 

  45. Hesterberg R, Cleveland J, Epling-Burnette PK (2018) Role of polyamines in immune cell functions. Med Sci 6(1):22. https://doi.org/10.3390/medsci6010022

    Article  CAS  Google Scholar 

  46. Snezhkina AV, Krasnov GS, Lipatova AV (2016) The dysregulation of polyamine metabolism in colorectal cancer is associated with overexpression of c-Myc and C/EBPβ rather than enterotoxigenic bacteroides fragilis infection. Oxid Med Cell Longev 2353560:11. https://doi.org/10.1155/2016/2353560

    Article  CAS  Google Scholar 

  47. Dhabhar FS (2014) Effects of stress on immune function: the good, the bad, and the beautiful. Immunol Res 58(2–3):193–210. https://doi.org/10.1007/s12026-014-8517-0

    Article  CAS  PubMed  Google Scholar 

  48. Bjelakovic G, Stojanovic I, Jevtovic-Stoimenov T, Pavlović D, Kocić G, Rossi S, Tabolacci C, Nikolić J, Sokolovic D, Bjelakovic L (2010) Metabolic correlations of glucocorticoids and polyamines in inflammation and apoptosis. Amino Acids 39:29–43. https://doi.org/10.1007/s00726-010-0489-3

    Article  CAS  PubMed  Google Scholar 

  49. Mariani F, Sena P, Roncucci L (2014) Inflammatory pathways in the early steps of colorectal cancer development. World J Gastroenterol 20(29):9716–9731. https://doi.org/10.3748/wjg.v20.i29.9716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Our special thanks to MD Felipe Cerda-Camacho, and Dr. David Avila-Figueroa, for histopathological evaluations; and to María Jazmin Gutiérrez Zepeda for English language editing of the manuscript.

Funding

This study was supported by funding from the P3E and Research Programs from the University of Guadalajara, México (#249947), PFCE-SEP (Programa de Fortalecimiento de la Calidad Educativa- Secretaria de la Educación Pública).

Author information

Authors and Affiliations

Authors

Contributions

EOZG and AS participated in the design of the experiments. EOZG, MLBIMG, and AS contributed to the experiments. All authors contributed to the analysis and discussion of the results, and preparation of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Anne Santerre.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed, and all procedures performed in studies involving animals were conducted following the ethical standards of the University of Guadalajara, Mexico. Ethical approval was granted by the Ethical Committee of the Research Coordination of the Campus of Agricultural and Biological Sciences (CUCBA) of the University of Guadalajara, Jalisco, México (C.INV./104/2020).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zamora-González, E.O., Castro-Félix, P., Huizar-López, M.R. et al. Chronic stress decreases ornithine decarboxylase expression and protects against 1,2-dimethylhydrazine-induced colon carcinogenesis. Mol Biol Rep 47, 9429–9439 (2020). https://doi.org/10.1007/s11033-020-06022-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-06022-0

Keywords

Navigation