Skip to main content

Advertisement

Log in

Walking through the wonder years of artificial DNA: peptide nucleic acid

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Peptide Nucleic Acid (PNA) serves as an artificial functional analog of DNA. Being immune to enzymatic degradation and possessing strong affinity towards DNA and RNA, it is an ideal candidate for many medical and biotechnological applications that are of antisense and antigene in nature. PNAs are anticipated to have its application in DNA and RNA detection as well as quantification, to serve as antibacterial and antiviral agents, and silencing gene for developing anticancer strategies. Although, their restricted entry in both eukaryotic and prokaryotic cells limit their applications. In addition, aggregation of PNA in storage containers reduces the quality and quantity of functional PNA that makes it inadequate for their mass production and storage. To overcome these limitations, researchers have modified PNA either by the addition of diverse functional groups at various loci on its backbone, or by synthesizing chimeras with other moieties associated with various delivery agents that aids their entry into the cell. Here, this review article summarizes few of the structural modifications that are performed with PNA, methods used to improve their cellular uptake and shedding light on the applications of PNA in various prospects in biological sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Morihiro K, Kasahara Y, Obika S (2017) Biological applications of xeno nucleic acids. Mol Biosyst 13(2):235–245. https://doi.org/10.1039/c6mb00538a

    Article  CAS  PubMed  Google Scholar 

  2. Nielsen PE, Egholm M, Berg RH, Buchardt O (1991) Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254(5037):1497–1500. https://doi.org/10.1126/science.1962210

    Article  CAS  PubMed  Google Scholar 

  3. Saarbach J, Sabale PM, Winssinger N (2019) Peptide nucleic acid (PNA) and its applications in chemical biology, diagnostics, and therapeutics. Curr Opin Chem Biol 52:112–124

    CAS  PubMed  Google Scholar 

  4. Nielsen PE, Haaima G (1997) Peptide nucleic acid (PNA) A DNA mimic with a pseudopeptide backbone. Chem Soc Rev 26(2):73–78

    CAS  Google Scholar 

  5. Egholm M, Christensen L, Deuholm KL, Buchardt O, Coull J, Nielsen PE (1995) Efficient pH-independent sequence-specific DNA binding by pseudoisocytosine-containing bis-PNA. Nucleic Acids Res 23(2):217–222. https://doi.org/10.1093/nar/23.2.217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Egholm M, Buchardt O, Christensen L, Behrens C, Freier SM, Driver DA, Berg RH, Kim SK, Norden B, Nielsen PE (1993) PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen-bonding rules. Nature 365(6446):566

    CAS  PubMed  Google Scholar 

  7. Adlerz L, Soomets U, Holmlund L, Viirlaid S, Langel Ü, Iverfeldt K (2003) Down-regulation of amyloid precursor protein by peptide nucleic acid oligomer in cultured rat primary neurons and astrocytes. Neurosci Lett 336(1):55–59. https://doi.org/10.1016/s0304-3940(02)01219-3

    Article  CAS  PubMed  Google Scholar 

  8. Nielsen PE (2004) Peptide nucleic acids: protocols and applications. Garland Science, New York

    Google Scholar 

  9. Oh SY, Ju Y, Park H (2009) A highly effective and long-lasting inhibition of miRNAs with PNA-based antisense oligonucleotides. Mol Cells 28(4):341

    CAS  PubMed  Google Scholar 

  10. Uhlmann E (1998) Peptide nucleic acids (PNA) and PNA-DNA chimeras: from high binding affinity towards biological function. Biol Chem 379(8–9):1045–1052

    CAS  PubMed  Google Scholar 

  11. Inagaki M, Uematsu R, Mizutani T, Unabara D, Araki Y, Sakamoto S, Kashida H, Nishijima M, Asanuma H, Inoue Y (2019) N-Benzoyl-protected peptide nucleic acid (PNA) monomers expand the range of nucleobases available for PNA-DNA chimera. Chem Lett 48(4):341–344

    CAS  Google Scholar 

  12. Borgatti M, Lampronti I, Romanelli A, Pedone C, Saviano M, Bianchi N, Mischiati C, Gambari R (2003) Transcription factor decoy molecules based on a peptide nucleic acid (PNA)-DNA chimera mimicking Sp1 binding sites. J Biol Chem 278(9):7500–7509. https://doi.org/10.1074/jbc.M206780200

    Article  CAS  PubMed  Google Scholar 

  13. Gambari R, Borgatti M, Bezzerri V, Nicolis E, Lampronti I, Dechecchi MC, Mancini I, Tamanini A, Cabrini G (2010) Decoy oligodeoxyribonucleotides and peptide nucleic acids–DNA chimeras targeting nuclear factor kappa-B: inhibition of IL-8 gene expression in cystic fibrosis cells infected with pseudomonas aeruginosa. Biochem Pharmacol 80(12):1887–1894

    CAS  PubMed  Google Scholar 

  14. Fader LD, Myers EL, Tsantrizos YS (2004) Synthesis of novel analogs of aromatic peptide nucleic acids (APNAs) with modified conformational and electrostatic properties. Tetrahedron 60(10):2235–2246

    CAS  Google Scholar 

  15. Pokorski JK, Witschi MA, Purnell BL, Appella DH (2004) (S, S)-trans-Cyclopentane-constrained peptide nucleic acids. A general backbone modification that improves binding affinity and sequence specificity. J Am Chem Soc 126(46):15067–15073

    CAS  PubMed  Google Scholar 

  16. Dragulescu-Andrasi A, Rapireddy S, Frezza BM, Gayathri C, Gil RR, Ly DH (2006) A simple γ-backbone modification preorganizes peptide nucleic acid into a helical structure. J Am Chem Soc 128(31):10258–10267

    CAS  PubMed  Google Scholar 

  17. Mitra R, Ganesh KN (2011) PNAs grafted with (α/γ, R/S)-aminomethylene pendants: regio and stereo specific effects on DNA binding and improved cell uptake. Chem Commun 47(4):1198–1200

    CAS  Google Scholar 

  18. Sugiyama T, Imamura Y, Demizu Y, Kurihara M, Takano M, Kittaka A (2011) β-PNA: peptide nucleic acid (PNA) with a chiral center at the β-position of the PNA backbone. Bioorg Med Chem Lett 21(24):7317–7320

    CAS  PubMed  Google Scholar 

  19. Hsieh W-C, Shaikh AY, Perera JDR, Thadke SA, Ly DH (2019) Synthesis of (R)-and (S)-Fmoc-protected diethylene glycol gamma PNA monomers with high optical purity. J Org Chem 84(3):1276–1287

    CAS  PubMed  Google Scholar 

  20. Püschl A, Tedeschi T, Nielsen PE (2000) Pyrrolidine PNA: a novel conformationally restricted PNA analogue. Org Lett 2(26):4161–4163

    PubMed  Google Scholar 

  21. Dragulescu-Andrasi A, Zhou P, He G, Ly DH (2005) Cell-permeable GPNA with appropriate backbone stereochemistry and spacing binds sequence-specifically to RNA. Chem Commun 2:244–246. https://doi.org/10.1039/b412522c

    Article  CAS  Google Scholar 

  22. Fader LD, Boyd M, Tsantrizos YS (2001) Backbone modifications of aromatic peptide nucleic acid (APNA) monomers and their hybridization properties with DNA and RNA. J Org Chem 66(10):3372–3379

    CAS  PubMed  Google Scholar 

  23. Govindaraju T, Kumar VA, Ganesh KN (2005) (SR/RS)-cyclohexanyl PNAs: conformationally preorganized PNA analogues with unprecedented preference for duplex formation with RNA. J Am Chem Soc 127(12):4144–4145. https://doi.org/10.1021/ja044142v

    Article  CAS  PubMed  Google Scholar 

  24. Sahu B, Sacui I, Rapireddy S, Zanotti KJ, Bahal R, Armitage BA, Ly DH (2011) Synthesis and characterization of conformationally preorganized,(R)-diethylene glycol-containing γ-peptide nucleic acids with superior hybridization properties and water solubility. J Org Chem 76(14):5614–5627

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Jain DR (2015) Cγ-aminopropylene peptide nucleic acid (amp-PNA): chiral cationic PNAs with superior PNA: DNA/RNA duplex stability and cellular uptake. Tetrahedron 71(21):3378–3384

    Google Scholar 

  26. Hanvey JC, Peffer NJ, Bisi JE, Thomson SA, Cadilla R, Josey JA, Ricca DJ, Hassman CF, Bonham MA, Au KG (1992) Antisense and antigene properties of peptide nucleic acids. Science 258(5087):1481–1485. https://doi.org/10.1126/science.1279811

    Article  CAS  PubMed  Google Scholar 

  27. Tang X, Maegawa S, Weinberg ES, Dmochowski IJ (2007) Regulating gene expression in zebrafish embryos using light-activated, negatively charged peptide nucleic acids. J Am Chem Soc 129(36):11000–11001

    CAS  PubMed  Google Scholar 

  28. Gehl J (2003) Electroporation: theory and methods, perspectives for drug delivery, gene therapy and research. Acta Physiol Scand 177(4):437–447. https://doi.org/10.1046/j.1365-201X.2003.01093.x

    Article  CAS  PubMed  Google Scholar 

  29. Karras JG, Maier MA, Lu T, Watt A, Manoharan M (2001) Peptide nucleic acids are potent modulators of endogenous pre-mRNA splicing of the murine interleukin-5 receptor-α chain. Biochemistry 40(26):7853–7859

    CAS  PubMed  Google Scholar 

  30. Joergensen M, Agerholm-Larsen B, Nielsen PE, Gehl J (2011) Efficiency of cellular delivery of antisense peptide nucleic acid by electroporation depends on charge and electroporation geometry. Oligonucleotides 21(1):29–37. https://doi.org/10.1089/oli.2010.0266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Brolin C, Shiraishi T, Hojman P, Krag TO, Nielsen PE, Gehl J (2015) Electroporation enhanced effect of dystrophin splice switching PNA oligomers in normal and dystrophic muscle. Mol Ther-Nucleic Acids 4:e267. https://doi.org/10.1038/mtna.2015.41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hamilton SE, Simmons CG, Kathiriya IS, Corey DR (1999) Cellular delivery of peptide nucleic acids and inhibition of human telomerase. Chem Biol 6(6):343–351. https://doi.org/10.1016/S1074-5521(99)80046-5

    Article  CAS  PubMed  Google Scholar 

  33. Rasmussen FW, Bendifallah N, Zachar V, Shiraishi T, Fink T, Ebbesen P, Nielsen PE, Koppelhus U (2006) Evaluation of transfection protocols for unmodified and modified peptide nucleic acid (PNA) oligomers. Oligonucleotides 16(1):43–57. https://doi.org/10.1089/oli.2006.16.43

    Article  CAS  PubMed  Google Scholar 

  34. Faruqi AF, Egholm M, Glazer PM (1998) Peptide nucleic acid-targeted mutagenesis of a chromosomal gene in mouse cells. Proc Natl Acad Sci 95(4):1398–1403. https://doi.org/10.1073/pnas.95.4.1398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Joshi R, Mishra R, Su W, Engelmann J (2008) CPP or cholesterol conjugation to antisense PNA for cellular delivery. In: Thirtieth European Peptide Symposium (Peptides 2008). FIPS, pp 550–551

  36. Koppelhus U, Shiraishi T, Zachar V, Pankratova S, Nielsen PE (2008) Improved cellular activity of antisense peptide nucleic acids by conjugation to a cationic peptide-lipid (CatLip) domain. Bioconjug Chem 19(8):1526–1534. https://doi.org/10.1021/bc800068h

    Article  CAS  PubMed  Google Scholar 

  37. Shiraishi T, Nielsen PE (2012) Nanomolar cellular antisense activity of peptide nucleic acid (PNA) cholic acid (“umbrella”) and cholesterol conjugates delivered by cationic lipids. Bioconjug Chem 23(2):196–202

    CAS  PubMed  Google Scholar 

  38. Soomets U, Lindgren M, Gallet X, Hällbrink M, Elmquist A, Balaspiri L, Zorko M, Pooga M, Brasseur R, Langel Ü (2000) Deletion analogues of transportan. Biochim Biophys Acta 1467(1):165–176. https://doi.org/10.1016/s0005-2736(00)00216-9

    Article  CAS  PubMed  Google Scholar 

  39. Lehto T, Ezzat K, Wood MJ, Andaloussi SE (2016) Peptides for nucleic acid delivery. Adv Drug Deliv Rev 106(Pt A):172–182. https://doi.org/10.1016/j.addr.2016.06.008

    Article  CAS  PubMed  Google Scholar 

  40. Good L, Nielsen PE (1998) Antisense inhibition of gene expression in bacteria by PNA targeted to mRNA. Nat Biotechnol 16(4):355. https://doi.org/10.1038/nbt0498-355

    Article  CAS  PubMed  Google Scholar 

  41. Good L, Awasthi SK, Dryselius R, Larsson O, Nielsen PE (2001) Bactericidal antisense effects of peptide–PNA conjugates. Nat Biotechnol 19(4):360

    CAS  PubMed  Google Scholar 

  42. Bai H, You Y, Yan H, Meng J, Xue X, Hou Z, Zhou Y, Ma X, Sang G, Luo X (2012) Antisense inhibition of gene expression and growth in gram-negative bacteria by cell-penetrating peptide conjugates of peptide nucleic acids targeted to rpoD gene. Biomaterials 33(2):659–667. https://doi.org/10.1016/j.biomaterials.2011.09.075

    Article  CAS  PubMed  Google Scholar 

  43. Good L, Sandberg R, Larsson O, Nielsen PE, Wahlestedt C (2000) Antisense PNA effects in escherichia coli are limited by the outer-membrane LPS layer. Microbiology 146(10):2665–2670. https://doi.org/10.1099/00221287-146-10-2665

    Article  CAS  PubMed  Google Scholar 

  44. Ghosal A, Vitali A, Stach JE, Nielsen PE (2012) Role of SbmA in the uptake of peptide nucleic acid (PNA)-peptide conjugates in E. coli. ACS Chem Biol 8(2):360–367. https://doi.org/10.1021/cb300434e

    Article  CAS  PubMed  Google Scholar 

  45. Mitchell DJ, Steinman L, Kim D, Fathman C, Rothbard J (2000) Polyarginine enters cells more efficiently than other polycationic homopolymers. J Pept Res 56(5):318–325

    CAS  PubMed  Google Scholar 

  46. Bendifallah N, Rasmussen FW, Zachar V, Ebbesen P, Nielsen PE, Koppelhus U (2006) Evaluation of cell-penetrating peptides (CPPs) as vehicles for intracellular delivery of antisense peptide nucleic acid (PNA). Bioconjug Chem 17(3):750–758

    CAS  PubMed  Google Scholar 

  47. Kauffman WB, Guha S, Wimley WC (2018) Synthetic molecular evolution of hybrid cell penetrating peptides. Nature Commun 9(1):2568. https://doi.org/10.1038/s41467-018-04874-6

    Article  CAS  Google Scholar 

  48. Tomassi S, Ieranò C, Mercurio ME, Nigro E, Daniele A, Russo R, Chambery A, Baglivo I, Pedone PV, Rea G (2018) Cationic nucleopeptides as novel non-covalent carriers for the delivery of peptide nucleic acid (PNA) and RNA oligomers. Bioorg Med Chem 26(9):2539–2550

    CAS  PubMed  Google Scholar 

  49. Ghaffari E, Rezatofighi SE, Ardakani MR, Rastegarzadeh S (2019) Delivery of antisense peptide nucleic acid by gold nanoparticles for the inhibition of virus replication. Nanomedicine 14(14):1827–1840. https://doi.org/10.2217/nnm-2018-0520

    Article  CAS  PubMed  Google Scholar 

  50. Baek A, Baek YM, Kim H-M, Jun B-H, Kim D-E (2018) Polyethylene glycol-engrafted graphene oxide as biocompatible materials for peptide nucleic acid delivery into cells. Bioconjug Chem 29(2):528–537

    CAS  PubMed  Google Scholar 

  51. McNeer NA, Chin JY, Schleifman EB, Fields RJ, Glazer PM, Saltzman WM (2011) Nanoparticles deliver triplex-forming PNAs for site-specific genomic recombination in CD34+ human hematopoietic progenitors. Mol Ther 19(1):172–180. https://doi.org/10.1038/mt.2010.200

    Article  CAS  PubMed  Google Scholar 

  52. Bahal R, McNeer NA, Ly DH, Saltzman WM, Glazer PM (2013) Nanoparticle for delivery of antisense γPNA oligomers targeting CCR5. Artificial DNA 4(2):49–57

    Google Scholar 

  53. Bahal R, Quijano E, McNeer AN, Liu Y, Bhunia CD, Lopez-Giraldez F, Fields JR, Saltzman MW, Ly HD, Glazer MP (2014) Single-stranded γPNAs for in vivo site-specific genome editing via watson-crick recognition. Curr Gene Ther 14(5):331–342

    CAS  PubMed  PubMed Central  Google Scholar 

  54. McNeer NA, Schleifman EB, Cuthbert A, Brehm M, Jackson A, Cheng C, Anandalingam K, Kumar P, Shultz LD, Greiner DL (2013) Systemic delivery of triplex-forming PNA and donor DNA by nanoparticles mediates site-specific genome editing of human hematopoietic cells in vivo. Gene Ther 20(6):658. https://doi.org/10.1038/gt.2012.82

    Article  CAS  PubMed  Google Scholar 

  55. Babar IA, Cheng CJ, Booth CJ, Liang X, Weidhaas JB, Saltzman WM, Slack FJ (2012) Nanoparticle-based therapy in an in vivo microRNA-155 (miR-155)-dependent mouse model of lymphoma. Proc Natl Acad Sci 109(26):E1695–E1704. https://doi.org/10.1073/pnas.1201516109

    Article  PubMed  PubMed Central  Google Scholar 

  56. McNeer NA, Anandalingam K, Fields RJ, Caputo C, Kopic S, Gupta A, Quijano E, Polikoff L, Kong Y, Bahal R (2015) Nanoparticles that deliver triplex-forming peptide nucleic acid molecules correct F508del CFTR in airway epithelium. Nature Commun 6:6952

    CAS  Google Scholar 

  57. Tseng C-L, Wang T-W, Dong G-C, Wu SY-H, Young T-H, Shieh M-J, Lou P-J, Lin F-H (2007) Development of gelatin nanoparticles with biotinylated EGF conjugation for lung cancer targeting. Biomaterials 28(27):3996–4005. https://doi.org/10.1016/j.biomaterials.2007.05.006

    Article  CAS  PubMed  Google Scholar 

  58. Bertucci A, Lülf H, Septiadi D, Manicardi A, Corradini R, De Cola L (2014) Intracellular delivery of peptide nucleic acid and organic molecules using zeolite-L nanocrystals. Adv Healthc Mater 3(11):1812–1817

    CAS  PubMed  Google Scholar 

  59. Ma X, Devi G, Qu Q, Toh D-FK, Chen G, Zhao Y (2014) Intracellular delivery of antisense peptide nucleic acid by fluorescent mesoporous silica nanoparticles. Bioconjug Chem 25(8):1412–1420. https://doi.org/10.1021/bc5002714

    Article  CAS  PubMed  Google Scholar 

  60. Shen Y, Shrestha R, Ibricevic A, Gunsten SP, Welch MJ, Wooley KL, Brody SL, Taylor JS, Liu Y (2013) Antisense peptide nucleic acid-functionalized cationic nanocomplex for in vivo mRNA detection. Interface Focus 3(3):20120059. https://doi.org/10.1098/rsfs.2012.0059

    Article  PubMed  PubMed Central  Google Scholar 

  61. Shrestha R, Shen Y, Pollack KA, Taylor J-SA, Wooley KL (2012) Dual peptide nucleic acid-and peptide-functionalized shell cross-linked nanoparticles designed to target mRNA toward the diagnosis and treatment of acute lung injury. Bioconjug Chem 23(3):574–585. https://doi.org/10.1021/bc200629f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fang H, Zhang K, Shen G, Wooley KL, Taylor J-SA (2009) Cationic shell-cross-linked knedel-like (cSCK) nanoparticles for highly efficient PNA delivery. Mol Pharm 6(2):615–626. https://doi.org/10.1021/mp800199w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Joshi VG, Chindera K, Singh AK, Sahoo AP, Dighe VD, Thakuria D, Tiwari AK, Kumar S (2013) Rapid label-free visual assay for the detection and quantification of viral RNA using peptide nucleic acid (PNA) and gold nanoparticles (AuNPs). Anal Chim Acta 795:1–7

    CAS  PubMed  Google Scholar 

  64. Pita M, Abad JM, Vaz-Dominguez C, Briones C, Mateo-Martí E, Martín-Gago JA, del Puerto MM, Fernández VM (2008) Synthesis of cobalt ferrite core/metallic shell nanoparticles for the development of a specific PNA/DNA biosensor. J Colloid Interf Sci 321(2):484–492. https://doi.org/10.1016/j.jcis.2008.02.010

    Article  CAS  Google Scholar 

  65. Gasparello J, Manicardi A, Casnati A, Corradini R, Gambari R, Finotti A, Sansone F (2019) Efficient cell penetration and delivery of peptide nucleic acids by an argininocalix [4] arene. Sci Rep 9(1):3036. https://doi.org/10.1038/s41598-019-39211-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Równicki M, Wojciechowska M, Wierzba AJ, Czarnecki J, Bartosik D, Gryko D, Trylska J (2017) Vitamin B 12 as a carrier of peptide nucleic acid (PNA) into bacterial cells. Sci Rep 7(1):7644

    PubMed  PubMed Central  Google Scholar 

  67. Campbell B, Hood T, Shank N (2019) Synthesis of a new disulfide Fmoc monomer for creating biologically susceptible linkages in peptide nucleic acid oligomers. Bioorg Chem 84:394–398. https://doi.org/10.1016/j.bioorg.2018.11.056

    Article  CAS  PubMed  Google Scholar 

  68. Falanga AP, Cerullo V, Marzano M, Feola S, Oliviero G, Piccialli G, Borbone N (2019) Peptide nucleic acid-functionalized adenoviral vectors targeting G-quadruplexes in the P1 promoter of Bcl-2 proto-oncogene: a new tool for gene modulation in anticancer therapy. Bioconjug Chem 30(3):572–582. https://doi.org/10.1021/acs.bioconjchem.8b00674

    Article  CAS  PubMed  Google Scholar 

  69. Saadati A, Hassanpour S, de la Guardia M, Mosafer J, Hashemzaei M, Mokhtarzadeh A, Baradaran B (2019) Recent advances on application of peptide nucleic acids as a bioreceptor in biosensors development. TRAC Trend Anal Chem 114:56–68

    CAS  Google Scholar 

  70. Wang J, Palecek E, Nielsen PE, Rivas G, Cai X, Shiraishi H, Dontha N, Luo D, Farias PA (1996) Peptide nucleic acid probes for sequence-specific DNA biosensors. J Am Chem Soc 118(33):7667–7670

    CAS  Google Scholar 

  71. Cai B, Wang S, Huang L, Ning Y, Zhang Z, Zhang G-J (2014) Ultrasensitive label-free detection of PNA–DNA hybridization by reduced graphene oxide field-effect transistor biosensor. ACS Nano 8(3):2632–2638

    CAS  PubMed  Google Scholar 

  72. Choi J-J, Jang M, Kim J, Park H (2010) Highly sensitive PNA array platform technology for single nucleotide mismatch discrimination. J Microbiol Biotechnol 20(2):287–293

    CAS  PubMed  Google Scholar 

  73. Hamidi-Asl E, Raoof JB, Ojani R, Golabi SM, Hejazi MS (2013) A new peptide nucleotide acid biosensor for electrochemical detection of single nucleotide polymorphism in duplex DNA via triplex structure formation. J Iran Chem Soc 10(6):1075–1083

    CAS  Google Scholar 

  74. Leekrajang M, Sae-ung P, Vilaivan T, Hoven VP (2019) Filter paper grafted with epoxide-based copolymer brushes for activation-free peptide nucleic acid conjugation and its application for colorimetric DNA detection. Colloids Surf B 173:851–859. https://doi.org/10.1016/j.colsurfb.2018.09.067

    Article  CAS  Google Scholar 

  75. Fortunati S, Rozzi A, Curti F, Giannetto M, Corradini R, Careri M (2019) Novel amperometric genosensor based on peptide nucleic acid (PNA) probes immobilized on carbon nanotubes-screen printed electrodes for the determination of trace levels of non-amplified DNA in genetically modified (GM) soy. Biosens Bioelectron 129:7–14. https://doi.org/10.1016/j.bios.2019.01.020

    Article  CAS  PubMed  Google Scholar 

  76. Yildiz UH, Alagappan P, Liedberg B (2012) Naked eye detection of lung cancer associated miRNA by paper based biosensing platform. Anal Chem 85(2):820–824. https://doi.org/10.1021/ac3034008

    Article  CAS  PubMed  Google Scholar 

  77. Wu Y, Han J, Xue P, Xu R, Kang Y (2015) Nano metal–organic framework (NMOF)-based strategies for multiplexed microRNA detection in solution and living cancer cells. Nanoscale 7(5):1753–1759

    CAS  PubMed  Google Scholar 

  78. Sakai M, Ikenaga M (2013) Application of peptide nucleic acid (PNA)-PCR clamping technique to investigate the community structures of rhizobacteria associated with plant roots. J Microbiol Methods 92(3):281–288. https://doi.org/10.1016/j.mimet.2012.09.036

    Article  CAS  PubMed  Google Scholar 

  79. Machnik G, Łabuzek K, Skudrzyk E, Rekowski P, Ruczyński J, Wojciechowska M, Mucha P, Giri S, Okopień B (2014) A peptide nucleic acid (PNA)-mediated polymerase chain reaction clamping allows the selective inhibition of the ERVWE1 gene amplification. Mol Cell Probes 28(5–6):237–241. https://doi.org/10.1016/j.mcp.2014.04.003

    Article  CAS  PubMed  Google Scholar 

  80. Shi H, Yang F, Li W, Zhao W, Nie K, Dong B, Liu Z (2015) A review: Fabrications, detections and applications of peptide nucleic acids (PNAs) microarray. Biosens Bioelectron 66:481–489. https://doi.org/10.1016/j.bios.2014.12.010

    Article  CAS  PubMed  Google Scholar 

  81. Dong B, Nie K, Shi H, Chao L, Ma M, Gao F, Liang B, Chen W, Long M, Liu Z (2019) Film-Spotting chiral miniPEG-γPNA array for BRCA1 gene mutation detection. Biosens Bioelectron 136:1–7

    CAS  PubMed  Google Scholar 

  82. Janowski BA, Hu J, Corey DR (2006) Silencing gene expression by targeting chromosomal DNA with antigene peptide nucleic acids and duplex RNAs. Nat Protoc 1(1):436. https://doi.org/10.1038/nprot.2006.64

    Article  CAS  PubMed  Google Scholar 

  83. Su W, Mishra R, Pfeuffer J, Wiesmüller KH, Ugurbil K, Engelmann J (2007) Synthesis and cellular uptake of a MR contrast agent coupled to an antisense peptide nucleic acid–cell–penetrating peptide conjugate. Contrast Media Mol Imaging 2(1):42–49

    CAS  PubMed  Google Scholar 

  84. Joshi R, Mishra R, Pohmann R, Engelmann J (2010) MR contrast agent composed of cholesterol and peptide nucleic acids: design, synthesis and cellular uptake. Bioorg Med Chem Lett 20(7):2238–2241. https://doi.org/10.1016/j.bmcl.2010.02.019

    Article  CAS  PubMed  Google Scholar 

  85. Croci S, Manicardi A, Rubagotti S, Bonacini M, Iori M, Capponi PC, Cicoria G, Parmeggiani M, Salvarani C, Versari A (2019) 64 Cu and fluorescein labeled anti-miRNA peptide nucleic acids for the detection of miRNA expression in living cells. Scientific reports 9(1):3376

    PubMed  PubMed Central  Google Scholar 

  86. Kim DC, Kim YZ (2019) Analysis of microRNA expression in glial tumors by using a peptide nucleic acid-based microarray. Precis Future Med. 3:124–134

    CAS  Google Scholar 

  87. Jampasa S, Wonsawat W, Rodthongkum N, Siangproh W, Yanatatsaneejit P, Vilaivan T, Chailapakul O (2014) Electrochemical detection of human papillomavirus DNA type 16 using a pyrrolidinyl peptide nucleic acid probe immobilized on screen-printed carbon electrodes. Biosens Bioelectrón 54:428–434

    CAS  PubMed  Google Scholar 

  88. Teengam P, Siangproh W, Tuantranont A, Henry CS, Vilaivan T, Chailapakul O (2017) Electrochemical paper-based peptide nucleic acid biosensor for detecting human papillomavirus. Anal Chim Acta 952:32–40. https://doi.org/10.1016/j.aca.2016.11.071

    Article  CAS  PubMed  Google Scholar 

  89. Huang XX, Urosevic N, Inglis TJ (2019) Accelerated bacterial detection in blood culture by enhanced acoustic flow cytometry (AFC) following peptide nucleic acid fluorescence in situ hybridization (PNA-FISH). PLoS ONE 14(2):e0201332. https://doi.org/10.1371/journal.pone.0201332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zaid MHM, Abdullah J, Yusof NA, Sulaiman Y, Wasoh H, Noh MFM, Issa R (2017) PNA biosensor based on reduced graphene oxide/water soluble quantum dots for the detection of Mycobacterium tuberculosis. Sens Actuators B 241:1024–1034

    Google Scholar 

  91. Chaumpluk P, Chaiprasart P (2010) Fluorescence biosensor based on N-(2-Aminoethyl) glycine peptide nucleic acid for a simple and rapid detection of Escherichia coli in fresh-cut mango. In: IX International Mango Symposium 992. pp 551–560

  92. Wang H, He Y, Xia Y, Wang L, Liang S (2014) Inhibition of gene expression and growth of multidrug-resistant acinetobacter baumannii by antisense peptide nucleic acids. Mol Biol Rep 41(11):7535–7541. https://doi.org/10.1007/s11033-014-3643-2

    Article  CAS  PubMed  Google Scholar 

  93. Sugimoto S, Maeda H, Kitamatsu M, Nishikawa I, Shida M (2019) Selective growth inhibition of porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans by antisense peptide nucleic acids. Mol Cell Probes 43:45–49. https://doi.org/10.1016/j.mcp.2018.11.006

    Article  CAS  PubMed  Google Scholar 

  94. Chen Z-y, Cheng A-c, Wang M-s, Xu D-w, Zeng W, Li Z (2007) Antiviral effects of PNA in duck hepatitis B virus infection model. Acta Pharmacol Sin 28(10):1652. https://doi.org/10.1111/j.1745-7254.2007.00641.x

    Article  CAS  PubMed  Google Scholar 

  95. Milani R, Brognara E, Fabbri E, Manicardi A, Corradini R, Finotti A, Gasparello J, Borgatti M, Cosenza LC, Lampronti I (2019) Targeting miR-155-5p and miR-221-3p by peptide nucleic acids induces caspase-3 activation and apoptosis in temozolomide-resistant T98G glioma cells. Int J Oncol 55(1):59–68

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Wang X, Liao X, Huang K, Zeng X, Liu Z, Zhou X, Yu T, Yang C, Yu L, Wang Q (2019) Clustered microRNAs hsa-miR-221-3p/hsa-miR-222-3p and their targeted genes might be prognostic predictors for hepatocellular carcinoma. J Cancer 10(11):2520

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Montazersaheb S, Kazemi M, Nabat E, Nielsen PE, Hejazi MS (2019) Downregulation of TdT expression through splicing modulation by antisense peptide nucleic acid (PNA). Curr Pharm Biotechnol 20(2):168–178

    CAS  PubMed  Google Scholar 

  98. Rigo F, Hua Y, Krainer AR, Bennett CF (2012) Antisense-based therapy for the treatment of spinal muscular atrophy. Rockefeller University Press, New York

    Google Scholar 

  99. Imamura Y, Tsuboi S, Sugiyama T, Kittaka A, Shin Y (2015) A peptide nucleic acid to reduce type I collagen production by fibroblast cells. Open J Med Chem 5(01):1

    CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

RP has written the manuscript, AS and DG corrected the manuscript. PP prepared the figures whereas MS reviewed the manuscript and suggested changes.

Corresponding author

Correspondence to Meenu Saraf.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, R., Sarma, S., Shukla, A. et al. Walking through the wonder years of artificial DNA: peptide nucleic acid. Mol Biol Rep 47, 8113–8131 (2020). https://doi.org/10.1007/s11033-020-05819-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05819-3

Keywords

Navigation