Skip to main content
Log in

The AKR1B1 inhibitor epalrestat suppresses the progression of cervical cancer

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Cervical cancer is the leading cause of cancer-related death among women worldwide. Identifying an effective treatment with fewer side effects is imperative, because all of the current treatments have unique disadvantages. Aldo–keto reductase family 1 member B1 (AKR1B1) is highly expressed in various cancers and is associated with tumor development, but has not been studied in cervical cancer. In the current study, we used CRISPR/Cas9 technology to establish a stable HeLa cell line with AKR1B1 knockout. In vitro, AKR1B1 knockout inhibited the proliferation, migration and invasion of HeLa cells, providing evidence that AKR1B1 is an innovative therapeutic target. Notably, the clinically used epalrestat, an inhibitor of aldose reductases, including AKR1B1, had the same effect as AKR1B1 knockout on HeLa cells. This result suggests that epalrestat could be used in the clinical treatment of cervical cancer, a prospect that undoubtedly requires further research. Moreover, aiming to determine the underlying regulatory mechanism of AKR1B1, we screened a series of differentially regulated genes (DEGs) by RNA sequencing and verified selected DEGs by quantitative RT-PCR. In addition, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of the DEGs revealed a correlation between AKR1B1 and cancer. In summary, epalrestat inhibits the progression of cervical cancer by inhibiting AKR1B1, and thus may be a new drug for the clinical treatment of cervical cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cohen PA, Jhingran A, Oaknin A, Denny L (2019) Cervical cancer. Lancet 393(10167):169–182. https://doi.org/10.1016/S0140-6736(18)32470-X

    Article  PubMed  Google Scholar 

  2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424. https://doi.org/10.3322/caac.21492

    Article  PubMed  Google Scholar 

  3. Siegel RL, Miller KD (2019) Jemal A (2019) Cancer statistics. CA Cancer J Clin 69(1):7–34. https://doi.org/10.3322/caac.21551

    Article  PubMed  Google Scholar 

  4. Zhao F, Qiao Y (2019) Cervical cancer prevention in China: a key to cancer control. Lancet 393(10175):969–970. https://doi.org/10.1016/S0140-6736(18)32849-6

    Article  PubMed  Google Scholar 

  5. Cancer Genome Atlas Research N, Albert Einstein College of M, Analytical Biological S, Barretos Cancer H, Baylor College of M, Beckman Research Institute of City of H, Buck Institute for Research on A, Canada's Michael Smith Genome Sciences C, Harvard Medical S, Helen FGCC, Research Institute at Christiana Care Health S, HudsonAlpha Institute for B, Ilsbio LLC, Indiana University School of M, Institute of Human V, Institute for Systems B, International Genomics C, Leidos B, Massachusetts General H, McDonnell Genome Institute at Washington U, Medical College of W, Medical University of South C, Memorial Sloan Kettering Cancer C, Montefiore Medical C, NantOmics, National Cancer I, National Hospital AN, National Human Genome Research I, National Institute of Environmental Health S, National Institute on D, Other Communication D, Ontario Tumour Bank LHSC, Ontario Tumour Bank OIfCR, Ontario Tumour Bank TOH, Oregon H, Science U, Samuel Oschin Comprehensive Cancer Institute C-SMC, International SRA, St Joseph's Candler Health S, Eli, Edythe LBIoMIoT, Harvard U, Research Institute at Nationwide Children's H, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins U, University of B, University of Texas MDACC, University of Abuja Teaching H, University of Alabama at B, University of California I, University of California Santa C, University of Kansas Medical C, University of L, University of New Mexico Health Sciences C, University of North Carolina at Chapel H, University of Oklahoma Health Sciences C, University of P, University of Sao Paulo RaPMS, University of Southern C, University of W, University of Wisconsin School of M, Public H, Van Andel Research I, Washington University in St L (2017) Integrated genomic and molecular characterization of cervical cancer. Nature 543(7645):378–384. https://doi.org/10.1038/nature21386

    Article  CAS  Google Scholar 

  6. Liu Y, Mi Y, Mueller T, Kreibich S, Williams EG, Van Drogen A, Borel C, Frank M, Germain PL, Bludau I, Mehnert M, Seifert M, Emmenlauer M, Sorg I, Bezrukov F, Bena FS, Zhou H, Dehio C, Testa G, Saez-Rodriguez J, Antonarakis SE, Hardt WD, Aebersold R (2019) Multi-omic measurements of heterogeneity in HeLa cells across laboratories. Nat Biotechnol 37(3):314–322. https://doi.org/10.1038/s41587-019-0037-y

    Article  CAS  PubMed  Google Scholar 

  7. Adey A, Burton JN, Kitzman JO, Hiatt JB, Lewis AP, Martin BK, Qiu R, Lee C, Shendure J (2013) The haplotype-resolved genome and epigenome of the aneuploid HeLa cancer cell line. Nature 500(7461):207–211. https://doi.org/10.1038/nature12064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Reddy KA, Kumar PU, Srinivasulu M, Triveni B, Sharada K, Ismail A, Reddy GB (2017) Overexpression and enhanced specific activity of aldoketo reductases (AKR1B1 & AKR1B10) in human breast cancers. Breast 31:137–143. https://doi.org/10.1016/j.breast.2016.11.003

    Article  PubMed  Google Scholar 

  9. Crespo I, Gimenez-Dejoz J, Porte S, Cousido-Siah A, Mitschler A, Podjarny A, Pratsinis H, Kletsas D, Pares X, Ruiz FX, Metwally K, Farres J (2018) Design, synthesis, structure-activity relationships and X-ray structural studies of novel 1-oxopyrimido[4,5-c]quinoline-2-acetic acid derivatives as selective and potent inhibitors of human aldose reductase. Eur J Med Chem 152:160–174. https://doi.org/10.1016/j.ejmech.2018.04.015

    Article  CAS  PubMed  Google Scholar 

  10. Zhang SQ, Yung KK, Chung SK, Chung SS (2018) Aldo-keto reductases-mediated cytotoxicity of 2-deoxyglucose: a novel anticancer mechanism. Cancer Sci 109(6):1970–1980. https://doi.org/10.1111/cas.13604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Torres-Mena JE, Salazar-Villegas KN, Sanchez-Rodriguez R, Lopez-Gabino B, Del Pozo-Yauner L, Arellanes-Robledo J, Villa-Trevino S, Gutierrez-Nava MA, Perez-Carreon JI (2018) Aldo-keto reductases as early biomarkers of hepatocellular carcinoma: a comparison between animal models and human HCC. Dig Dis Sci 63(4):934–944. https://doi.org/10.1007/s10620-018-4943-5

    Article  CAS  PubMed  Google Scholar 

  12. Schwab A, Siddiqui A, Vazakidou ME, Napoli F, Bottcher M, Menchicchi B, Raza U, Saatci O, Krebs AM, Ferrazzi F, Rapa I, Dettmer-Wilde K, Waldner MJ, Ekici AB, Rasheed SAK, Mougiakakos D, Oefner PJ, Sahin O, Volante M, Greten FR, Brabletz T, Ceppi P (2018) Polyol pathway links glucose metabolism to the aggressiveness of cancer cells. Cancer Res 78(7):1604–1618. https://doi.org/10.1158/0008-5472.CAN-17-2834

    Article  CAS  PubMed  Google Scholar 

  13. Wu X, Li X, Fu Q, Cao Q, Chen X, Wang M, Yu J, Long J, Yao J, Liu H, Wang D, Liao R, Dong C (2017) AKR1B1 promotes basal-like breast cancer progression by a positive feedback loop that activates the EMT program. J Exp Med 214(4):1065–1079. https://doi.org/10.1084/jem.20160903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Plebuch M, Soldan M, Hungerer C, Koch L, Maser E (2007) Increased resistance of tumor cells to daunorubicin after transfection of cDNAs coding for anthracycline inactivating enzymes. Cancer Lett 255(1):49–56. https://doi.org/10.1016/j.canlet.2007.03.018

    Article  CAS  PubMed  Google Scholar 

  15. Xiao MB, Jin DD, Jiao YJ, Ni WK, Liu JX, Qu LS, Lu CH, Ni RZ, Jiang F, Chen WC (2018) beta2-AR regulates the expression of AKR1B1 in human pancreatic cancer cells and promotes their proliferation via the ERK1/2 pathway. Mol Biol Rep 45(6):1863–1871. https://doi.org/10.1007/s11033-018-4332-3

    Article  CAS  PubMed  Google Scholar 

  16. He J, Gao HX, Yang N, Zhu XD, Sun RB, Xie Y, Zeng CH, Zhang JW, Wang JK, Ding F, Aa JY, Wang GJ (2019) The aldose reductase inhibitor epalrestat exerts nephritic protection on diabetic nephropathy in db/db mice through metabolic modulation. Acta Pharmacol Sin 40(1):86–97. https://doi.org/10.1038/s41401-018-0043-5

    Article  CAS  PubMed  Google Scholar 

  17. Banala VT, Urandur S, Sharma S, Sharma M, Shukla RP, Marwaha D, Gautam S, Dwivedi M, Mishra PR (2019) Targeted co-delivery of the aldose reductase inhibitor epalrestat and chemotherapeutic doxorubicin via a redox-sensitive prodrug approach promotes synergistic tumor suppression. Biomater Sci 7(7):2889–2906. https://doi.org/10.1039/c9bm00221a

    Article  CAS  PubMed  Google Scholar 

  18. Drolet M, Benard E, Perez N, Brisson M, Group HPVVIS (2019) Population-level impact and herd effects following the introduction of human papillomavirus vaccination programmes: updated systematic review and meta-analysis. Lancet 394(10197):497–509. https://doi.org/10.1016/S0140-6736(19)30298-3

    Article  PubMed  PubMed Central  Google Scholar 

  19. Malagon T, Kulasingam S, Mayrand MH, Ogilvie G, Smith L, Bouchard C, Gotlieb W, Franco EL (2018) Age at last screening and remaining lifetime risk of cervical cancer in older, unvaccinated, HPV-negative women: a modelling study. Lancet Oncol 19(12):1569–1578. https://doi.org/10.1016/S1470-2045(18)30536-9

    Article  PubMed  Google Scholar 

  20. Simms KT, Steinberg J, Caruana M, Smith MA, Lew JB, Soerjomataram I, Castle PE, Bray F, Canfell K (2019) Impact of scaled up human papillomavirus vaccination and cervical screening and the potential for global elimination of cervical cancer in 181 countries, 2020–99: a modelling study. Lancet Oncol 20(3):394–407. https://doi.org/10.1016/S1470-2045(18)30836-2

    Article  PubMed  Google Scholar 

  21. Roden RBS, Stern PL (2018) Opportunities and challenges for human papillomavirus vaccination in cancer. Nat Rev Cancer 18(4):240–254. https://doi.org/10.1038/nrc.2018.13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Keskar V, Mohanty PS, Gemeinhart EJ, Gemeinhart RA (2006) Cervical cancer treatment with a locally insertable controlled release delivery system. J Control Release 115(3):280–288. https://doi.org/10.1016/j.jconrel.2006.08.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li H, Wu X, Cheng X (2016) Advances in diagnosis and treatment of metastatic cervical cancer. J Gynecol Oncol 27(4):e43. https://doi.org/10.3802/jgo.2016.27.e43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Koning GA, Eggermont AM, Lindner LH, ten Hagen TL (2010) Hyperthermia and thermosensitive liposomes for improved delivery of chemotherapeutic drugs to solid tumors. Pharm Res 27(8):1750–1754. https://doi.org/10.1007/s11095-010-0154-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang W, Liu Y, Zhou X, Zhao R, Wang H (2020) Applications of CRISPR-Cas9 in gynecological cancer research. Clin Genet. https://doi.org/10.1111/cge.13717

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yao S, He Z, Chen C (2015) CRISPR/Cas9-mediated genome editing of epigenetic factors for cancer therapy. Hum Gene Ther 26(7):463–471. https://doi.org/10.1089/hum.2015.067

    Article  CAS  PubMed  Google Scholar 

  27. Gupta D, Bhattacharjee O, Mandal D, Sen MK, Dey D, Dasgupta A, Kazi TA, Gupta R, Sinharoy S, Acharya K, Chattopadhyay D, Ravichandiran V, Roy S, Ghosh D (2019) CRISPR-Cas9 system: a new-fangled dawn in gene editing. Life Sci 232:116636. https://doi.org/10.1016/j.lfs.2019.116636

    Article  CAS  PubMed  Google Scholar 

  28. Zhang XH, Tee LY, Wang XG, Huang QS, Yang SH (2015) Off-target Effects in CRISPR/Cas9-mediated Genome Engineering. Mol Ther Nucleic Acids 4:e264. https://doi.org/10.1038/mtna.2015.37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Charlesworth CT, Deshpande PS, Dever DP, Camarena J, Lemgart VT, Cromer MK, Vakulskas CA, Collingwood MA, Zhang L, Bode NM, Behlke MA, Dejene B, Cieniewicz B, Romano R, Lesch BJ, Gomez-Ospina N, Mantri S, Pavel-Dinu M, Weinberg KI, Porteus MH (2019) Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat Med 25(2):249–254. https://doi.org/10.1038/s41591-018-0326-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ferdosi SR, Ewaisha R, Moghadam F, Krishna S, Park JG, Ebrahimkhani MR, Kiani S, Anderson KS (2019) Multifunctional CRISPR-Cas9 with engineered immunosilenced human T cell epitopes. Nat Commun 10(1):1842. https://doi.org/10.1038/s41467-019-09693-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yama K, Sato K, Abe N, Murao Y, Tatsunami R, Tampo Y (2015) Epalrestat increases glutathione, thioredoxin, and heme oxygenase-1 by stimulating Nrf2 pathway in endothelial cells. Redox Biol 4:87–96. https://doi.org/10.1016/j.redox.2014.12.002

    Article  CAS  PubMed  Google Scholar 

  32. Sachs RE, Ginsburg PB, Goldman DP (2017) Encouraging New Uses for Old Drugs. JAMA 318(24):2421–2422. https://doi.org/10.1001/jama.2017.17535

    Article  PubMed  Google Scholar 

  33. Janku F, Yap TA, Meric-Bernstam F (2018) Targeting the PI3K pathway in cancer: are we making headway? Nat Rev Clin Oncol 15(5):273–291. https://doi.org/10.1038/nrclinonc.2018.28

    Article  CAS  PubMed  Google Scholar 

  34. Taniguchi K, Karin M (2018) NF-kappaB, inflammation, immunity and cancer: coming of age. Nat Rev Immunol 18(5):309–324. https://doi.org/10.1038/nri.2017.142

    Article  CAS  PubMed  Google Scholar 

  35. Chen X, Chen C, Hao J, Qin R, Qian B, Yang K, Zhang J, Zhang F (2018) AKR1B1 Upregulation Contributes to Neuroinflammation and Astrocytes Proliferation by Regulating the Energy Metabolism in Rat Spinal Cord Injury. Neurochem Res 43(8):1491–1499. https://doi.org/10.1007/s11064-018-2570-3

    Article  CAS  PubMed  Google Scholar 

  36. Yang B, Hodgkinson A, Oates PJ, Millward BA, Demaine AG (2008) High glucose induction of DNA-binding activity of the transcription factor NFkappaB in patients with diabetic nephropathy. Biochim Biophys Acta 1782(5):295–302. https://doi.org/10.1016/j.bbadis.2008.01.009

    Article  CAS  PubMed  Google Scholar 

  37. Hoxhaj G, Manning BD (2020) The PI3K-AKT network at the interface of oncogenic signalling and cancer metabolism. Nat Rev Cancer 20(2):74–88. https://doi.org/10.1038/s41568-019-0216-7

    Article  CAS  PubMed  Google Scholar 

  38. Cheriyath V, Kaur J, Davenport A, Khalel A, Chowdhury N, Gaddipati L (2018) G1P3 (IFI6), a mitochondrial localised antiapoptotic protein, promotes metastatic potential of breast cancer cells through mtROS. Br J Cancer 119(1):52–64. https://doi.org/10.1038/s41416-018-0137-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gupta R, Forloni M, Bisserier M, Dogra SK, Yang Q, Wajapeyee N (2016) Interferon alpha-inducible protein 6 regulates NRASQ61K-induced melanomagenesis and growth. Elife. https://doi.org/10.7554/eLife.16432

    Article  PubMed  PubMed Central  Google Scholar 

  40. Cheriyath V, Kuhns MA, Jacobs BS, Evangelista P, Elson P, Downs-Kelly E, Tubbs R, Borden EC (2012) G1P3, an interferon- and estrogen-induced survival protein contributes to hyperplasia, tamoxifen resistance and poor outcomes in breast cancer. Oncogene 31(17):2222–2236. https://doi.org/10.1038/onc.2011.393

    Article  CAS  PubMed  Google Scholar 

  41. Cheriyath V, Glaser KB, Waring JF, Baz R, Hussein MA, Borden EC (2007) G1P3, an IFN-induced survival factor, antagonizes TRAIL-induced apoptosis in human myeloma cells. J Clin Invest 117(10):3107–3117. https://doi.org/10.1172/JCI31122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pidugu VK, Wu MM, Yen AH, Pidugu HB, Chang KW, Liu CJ, Lee TC (2019) IFIT1 and IFIT3 promote oral squamous cell carcinoma metastasis and contribute to the anti-tumor effect of gefitinib via enhancing p-EGFR recycling. Oncogene 38(17):3232–3247. https://doi.org/10.1038/s41388-018-0662-9

    Article  CAS  PubMed  Google Scholar 

  43. Suomela S, Cao L, Bowcock A, Saarialho-Kere U (2004) Interferon alpha-inducible protein 27 (IFI27) is upregulated in psoriatic skin and certain epithelial cancers. J Invest Dermatol 122(3):717–721. https://doi.org/10.1111/j.0022-202X.2004.22322.x

    Article  CAS  PubMed  Google Scholar 

  44. Li S, Xie Y, Zhang W, Gao J, Wang M, Zheng G, Yin X, Xia H, Tao X (2015) Interferon alpha-inducible protein 27 promotes epithelial-mesenchymal transition and induces ovarian tumorigenicity and stemness. J Surg Res 193(1):255–264. https://doi.org/10.1016/j.jss.2014.06.055

    Article  CAS  PubMed  Google Scholar 

  45. Zhang L, Jiang Y, Lu X, Zhao H, Chen C, Wang Y, Hu W, Zhu Y, Yan H, Yan F (2019) Genomic characterization of cervical cancer based on human papillomavirus status. Gynecol Oncol 152(3):629–637. https://doi.org/10.1016/j.ygyno.2018.12.017

    Article  CAS  PubMed  Google Scholar 

  46. Zhou MJ, Chen FZ, Chen HC, Wan XX, Zhou X, Fang Q, Zhang DZ (2017) ISG15 inhibits cancer cell growth and promotes apoptosis. Int J Mol Med 39(2):446–452. https://doi.org/10.3892/ijmm.2016.2845

    Article  CAS  PubMed  Google Scholar 

  47. Gomez-Herranz M, Nekulova M, Faktor J, Hernychova L, Kote S, Sinclair EH, Nenutil R, Vojtesek B, Ball KL, Hupp TR (2019) The effects of IFITM1 and IFITM3 gene deletion on IFNgamma stimulated protein synthesis. Cell Signal 60:39–56. https://doi.org/10.1016/j.cellsig.2019.03.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zheng W, Zhao Z, Yi X, Zuo Q, Li H, Guo X, Li D, He H, Pan Z, Fan P, Li F, Liao Y, Shao R (2017) Down-regulation of IFITM1 and its growth inhibitory role in cervical squamous cell carcinoma. Cancer Cell Int 17:88. https://doi.org/10.1186/s12935-017-0456-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pan Z, Chen S, Pan X, Wang Z, Han H, Zheng W, Wang X, Li F, Qu S, Shao R (2010) Differential gene expression identified in Uigur women cervical squamous cell carcinoma by suppression subtractive hybridization. Neoplasma 57(2):123–128. https://doi.org/10.4149/neo_2010_02_123

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the Key Research and Development Plan of Jiangsu Province (No. BE2019692), Postdoctoral Science Foundation of China (Grant No. 2019M661909), the Social Development Foundation of Nantong City (Grant Nos. MS22018006, MS12019018, MS12019020), and Teaching Research Project of Affiliated Hospital of Nantong University (Tfj 18006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juan Zhou or Ming-Bing Xiao.

Ethics declarations

Conflict of interest:

The authors declare that they have no competing interests for this study.

Ethical approval:

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent:

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 381 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, J., Xu, MX., Qian, TY. et al. The AKR1B1 inhibitor epalrestat suppresses the progression of cervical cancer. Mol Biol Rep 47, 6091–6103 (2020). https://doi.org/10.1007/s11033-020-05685-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05685-z

Keywords

Navigation