Skip to main content

Advertisement

Log in

The association between genetic variants in the genes for cytochrome P450 B1 and ATP-binding cassette transporter genes and breast cancer risk

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Breast cancer is among the most common malignancies in women. Recent studies have shown that polymorphisms in genes involved in the metabolism and transport of anticancer drugs are associated with outcomes of several malignancies, e.g., breast cancer. In this study we evaluate whether CYP1B1/rs1056836 and ABCB1/rs2032582 gene variants are associated with breast cancer. Eighty eight cases and 200 controls, were genotyped for polymorphisms of the CYP1B1 and ABCB1 genes using Taqman®-based methods. Logistic regression was also used to test the associations between breast cancer risk and the various genotypes involved. The GG genotype of rs2032582 locus had a frequency of 43.5% with 0.38 MAF; while the GT and TT genotypes in the control group were 40% and 16.5%, respectively. The GG, GT and TT genotype frequencies in the patients with breast cancer were 45.5%, 12.5% and 26.1%, respectively. An association was observed between the TT genotype of ABCB1/rs2032582 locus and a larger breast cancer tumor size (P < 0.05). However, neither the relationship between the CYP1B1 polymorphism and breast cancer type nor the risk of breast cancer were statistically significant. Our data suggest a potential association of the ABCB1 genetic variant with breast cancer tumor size, however further investigation in a larger population is necessary to show its value as a risk stratification biomarker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iscan M et al (2001) The expression of cytochrome P450 enzymes in human breast tumours and normal breast tissue. Breast Cancer Res Treat 70(1):47–54

    Article  CAS  PubMed  Google Scholar 

  2. McPherson K, Steel C, Dixon J (2000) ABC of breast diseases: breast cancer—epidemiology, risk factors, and genetics. BMJ Br Med J 321(7261):624

    Article  CAS  Google Scholar 

  3. Key T, Vogel V (2004) Body mass index, serum sex hormones, and breast cancer risk in postmenopausal women. Breast Dis 15(1):33–33

    Google Scholar 

  4. Hormones E, BCC Group (2002) Endogenous sex hormones and breast cancer in postmenopausal women: reanalysis of nine prospective studies. J Natl Cancer Inst 94(8):606–616

    Article  Google Scholar 

  5. Onland-Moret N et al (2003) Urinary endogenous sex hormone levels and the risk of postmenopausal breast cancer. Br J Cancer 88(9):1394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Missmer SA et al (2004) Endogenous estrogen, androgen, and progesterone concentrations and breast cancer risk among postmenopausal women. J Natl Cancer Inst 96(24):1856–1865

    Article  CAS  PubMed  Google Scholar 

  7. Lyman GH et al (2005) American Society of Clinical Oncology guideline recommendations for sentinel lymph node biopsy in early-stage breast cancer. J Clin Oncol 23(30):7703–7720

    Article  PubMed  Google Scholar 

  8. Han S et al (2018) Axillary staging for breast cancer during pregnancy: feasibility and safety of sentinel lymph node biopsy. Breast Cancer Res Treat 168(2):551–557

    Article  CAS  PubMed  Google Scholar 

  9. Qu LT et al (2018) Considerations for sentinel lymph node biopsy in breast cancer patients with biopsy proven axillary disease prior to neoadjuvant treatment. Am J Surg 215(3):530–533

    Article  PubMed  Google Scholar 

  10. Darby SC et al (2005) Long-term mortality from heart disease and lung cancer after radiotherapy for early breast cancer: prospective cohort study of about 300 000 women in US SEER cancer registries. Lancet Oncol 6(8):557–565

    Article  PubMed  Google Scholar 

  11. Jahromi R et al (2019) Primary stenosis progression versus secondary stenosis formation in the left coronary bifurcation: a mechanical point of view. Biocybern Biomed Eng 39(1):188–198

    Article  Google Scholar 

  12. Mafu TS, September AV, Shamley D (2018) The potential role of angiogenesis in the development of shoulder pain, shoulder dysfunction, and lymphedema after breast cancer treatment. Cancer Manage Res 10:81

    Article  CAS  Google Scholar 

  13. Mehta LS et al (2018) Cardiovascular disease and breast cancer: where these entities intersect: a scientific statement from the American Heart Association. Circulation 137(8):e30–e66

    Article  PubMed  PubMed Central  Google Scholar 

  14. Senkus E et al (2015) Primary breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 26(suppl 5):v8–v30

    Article  PubMed  Google Scholar 

  15. Bertoli G, Cava C, Castiglioni I (2015) MicroRNAs: new biomarkers for diagnosis, prognosis, therapy prediction and therapeutic tools for breast cancer. Theranostics 5(10):1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA Cancer J Clin 66(1):7–30

    Article  PubMed  Google Scholar 

  17. Zhang B et al (2011) Genetic variants associated with breast-cancer risk: comprehensive research synopsis, meta-analysis, and epidemiological evidence. Lancet Oncol 12(5):477–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang XR et al (2010) Associations of 9p21 variants with cutaneous malignant melanoma, nevi, and pigmentation phenotypes in melanoma-prone families with and without CDKN2A mutations. Fam Cancer 9(4):625–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dębniak T et al (2005) A common variant of CDKN2A (p16) predisposes to breast cancer. J Med Genet 42(10):763–765

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sherborne AL et al (2010) Variation in CDKN2A at 9p21.3 influences childhood acute lymphoblastic leukemia risk. Nat Genet 42(6):492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Burdon KP et al (2011) Genome-wide association study identifies susceptibility loci for open angle glaucoma at TMCO1 and CDKN2B-AS1. Nat Geneti 43(6):574

    Article  CAS  Google Scholar 

  22. Beuten J et al (2008) CYP1B1 variants are associated with prostate cancer in non-Hispanic and Hispanic Caucasians. Carcinogenesis 29(9):1751–1757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gehrmann M et al (2008) Prediction of paclitaxel resistance in breast cancer: is CYP1B1* 3 a new factor of influence? Pharmacogenomics 9(7):969–974

    Article  PubMed  Google Scholar 

  24. Bailey LR et al (1998) Association of cytochrome P450 1B1 (CYP1B1) polymorphism with steroid receptor status in breast cancer. Cancer Res 58(22):5038–5041

    CAS  PubMed  Google Scholar 

  25. Cerne J-Z et al (2011) Combined effect of CYP1B1, COMT, GSTP1, and MnSOD genotypes and risk of postmenopausal breast cancer. J Gynecol Oncol 22(2):110–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Han JY et al (2007) Associations of ABCB1, ABCC2, and ABCG2 polymorphisms with irinotecan-pharmacokinetics and clinical outcome in patients with advanced non-small cell lung cancer. Cancer 110(1):138–147

    Article  PubMed  Google Scholar 

  27. Rastgar-Moghadam A et al (2019) Association of a genetic variant in ATP-binding cassette sub-family B member 1 gene with poor prognosis in patients with squamous cell carcinoma of the esophagus. IUBMB Life 71(9):1252–1258

    Article  CAS  PubMed  Google Scholar 

  28. Holland IB et al (2003) ABC proteins: from bacteria to man. Elsevier, New York

    Google Scholar 

  29. Gervasini G et al (2006) Adenosine triphosphate-binding cassette B1 (ABCB1)(multidrug resistance 1) G2677T/A gene polymorphism is associated with high risk of lung cancer. Cancer 107(12):2850–2857

    Article  CAS  PubMed  Google Scholar 

  30. Sainz J et al (2011) Association of genetic polymorphisms in ESR2, HSD17B1, ABCB1, and SHBG genes with colorectal cancer risk. Endocr Relat Cancer 18(2):265

    Article  CAS  PubMed  Google Scholar 

  31. Mehramiz M et al (2018) Interaction between a variant of CDKN2A/B-gene with lifestyle factors in determining dyslipidemia and estimated cardiovascular risk: a step toward personalized nutrition. Clin Nutr 37(1):254–261

    Article  CAS  PubMed  Google Scholar 

  32. Mardan-Nik M et al (2014) Association of heat shock protein70-2 (HSP70-2) gene polymorphism with coronary artery disease in an Iranian population. Gene 550(2):180–184

    Article  CAS  PubMed  Google Scholar 

  33. Oladi M et al (2015) Impact of the C1431T polymorphism of the peroxisome proliferator activated receptor-gamma (PPAR-γ) gene on fasted serum lipid levels in patients with coronary artery disease. Ann Nutr Metab 66(2–3):149–154

    Article  CAS  PubMed  Google Scholar 

  34. Murray GI et al (1997) Tumor-specific expression of cytochrome P450 CYP1B1. Cancer Res 57(14):3026–3031

    CAS  PubMed  Google Scholar 

  35. Ghisari M et al (2017) Polymorphism in xenobiotic and estrogen metabolizing genes, exposure to perfluorinated compounds and subsequent breast cancer risk: a nested case-control study in the Danish National Birth Cohort. Environ Res 154:325–333

    Article  CAS  PubMed  Google Scholar 

  36. Lu P-H et al (2011) Association between two polymorphisms of ABCB1 and breast cancer risk in the current studies: a meta-analysis. Breast Cancer Res Treat 125(2):537–543

    Article  PubMed  Google Scholar 

  37. Wu H et al (2012) Roles of ABCB1 gene polymorphisms and haplotype in susceptibility to breast carcinoma risk and clinical outcomes. J Cancer Res Clin Oncol 138(9):1449–1462

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We would like to thanks Nastaran Bani, Sajjad Hoseinpour, Majid Ghayour-Mobarhan for their help for improving our manuscript, statistical analysis and providing samples.

Funding

This study was supported by Grants (941296 and 940724) from Mashhad University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Avan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Soodabeh ShahidSales, Mehrane Mehramiz and Davood Radmanesh have contributed equally as the first author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

ShahidSales, S., Mehramiz, M., Radmanesh, D. et al. The association between genetic variants in the genes for cytochrome P450 B1 and ATP-binding cassette transporter genes and breast cancer risk. Mol Biol Rep 47, 6009–6014 (2020). https://doi.org/10.1007/s11033-020-05674-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05674-2

Keywords

Navigation