Skip to main content

Advertisement

Log in

Selection of suitable reference genes for qRT-PCR expression analysis of Codonopsis pilosula under different experimental conditions

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Codonopsis pilosula is a well-known medicinal plant. Although its transcriptome sequence has been published, suitable reference genes have not been systematically identified for conducting expression analyses via quantitative real-time polymerase chain reaction (qRT-PCR). To screen appropriate genes for use with this species, we applied four different methods—GeNorm, NormFinder, BestKeeper, and RefFinder—to evaluate the stability of 13 candidates: CpiEF1Bb, CpiCACS, CpiF-Box, Cpiβ-Tubulin, CpiGAPDH, CpiActin2, CpiAPT1, CpiActin7, CpiActin8, CpiRPL6, CpiHAF1, CpiTubulin6, and CpiUBQ12. Expression was examined by qRT-PCR for various tissue types, chemical treatments, and developmental stages. For all tested samples, CpiGAPDH proved to be the most stable. Comprehensive analysis indicated that the most stable internal reference genes were CpiF-Box and CpiCACS in different tissues and at different developmental stages, respectively. Under NaCl stress, CpiAPT1 was the best internal reference gene. For methyl jasmonate and abscisic acid treatments, CpiGAPDH and CpiF-Box, respectively, presented the highest degree of expression stability. Based on these findings, we chose CpiSPL9 as the target gene for validating the suitability of these selected reference genes. All of these results provide a foundation for accurate quantification of expression levels by genes of interest in C. pilosula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Xu YY, Zhu XW, Gong YW, Xu L, Wang Y, Liu LW (2012) Evaluation of reference genes for gene expression studies in radish (Raphanus sativus L.) using quantitative real-time PCR. Biochem Biophys Res Commun 3:398–403. https://doi.org/10.1016/j.bbrc.2012.06.119

    Article  CAS  Google Scholar 

  2. Saddhe AA, Malvankar MR, Kumar K (2018) Selection of reference genes for quantitative real-time PCR analysis in halophytic plant Rhizophora apiculata. PeerJ 6:e5226. https://doi.org/10.7717/peerj.5226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bustin SA (2002) Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol 29:23–39. https://doi.org/10.1677/jme.0.0290023

    Article  CAS  PubMed  Google Scholar 

  4. Jin HJ, Wang HX, Liu ZH, Zhang T, Xiang SY (2018) Selection of reference genes for 1uantitative real-time PCR in Dipsacu asperides roots. Mol Plant Breed 16:7998–8004. https://doi.org/10.13271/j.mpb.016.007998

    Article  Google Scholar 

  5. Xiang Q, Li J, Qin P, He M, Yu X, Zhao K, Zhang X, Ma M, Chen Q, Chen X, Zeng X, Gu Y (2018) Identification and evaluation of reference genes for RT-qPCR studies in Lentinula edodes. PLoS ONE 13:e0190226. https://doi.org/10.1371/journal.pone.0190226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang Q, Liu W, Cai Y, Lan AF, Bian Y (2018) Validation of internal control genes for quantitative real-time PCR gene expression analysis in Morchella. Molecules 23:2331. https://doi.org/10.3390/molecules23092331

    Article  CAS  PubMed Central  Google Scholar 

  7. Fang SM, Hu BL, Zhou QZ, Yu QY, Zhang Z (2015) Comparative analysis of the silk gland transcriptomes between the domestic and wild silkworms. BMC Genom 16:60. https://doi.org/10.1186/s12864-015-1287-9

    Article  Google Scholar 

  8. Yu Q, Xiong Y, Liu J, Wen D, Wu X, Yin H (2016) Transcriptome analysis of the SL221 cells at the early stage during Spodoptera litura nucleopolyhedrovirus infection. PLoS ONE 11:e0147873. https://doi.org/10.1371/journal.pone.0147873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mori R, Wang QC, Danenberg KD, Pinski JK, Danenberg PV (2008) Both β-actin and GAPDH are useful reference genes for normalization of quantitative RT-PCR in human FFPE tissue samples of prostate cancer. Prostate 68:1555–1560. https://doi.org/10.1002/pros.20815

    Article  CAS  PubMed  Google Scholar 

  10. Feng K, Liu JX, Xing GM, Sun S, Li S, Duan AQ, Wang F, Li MY, Xu ZS, Xiong AS (2019) Selection of appropriate reference genes for RT-qPCR analysis under abiotic stress and hormone treatment in celery. PeerJ 7:e7925. https://doi.org/10.7717/peerj.7925

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sun HP, Li F, Ruan QM, Zhong XH (2016) Identification and validation of reference genes for quantitative real-time PCR studies in Hedera helix L. Plant Physiol Biochem 108:286–294. https://doi.org/10.1016/j.plaphy.2016.07.022

    Article  CAS  PubMed  Google Scholar 

  12. Shukla P, Reddy RA, Ponnuvel KM, Rohela GK, Shabnam AA, Ghosh MK, Mishra RK (2019) Selection of suitable reference genes for quantitative real-time PCR gene expression analysis in mulberry (Morus alba L.) under different abiotic stresses. Mol Biol Rep 46(2):1809–1817. https://doi.org/10.1007/s11033-019-04631-y

    Article  CAS  PubMed  Google Scholar 

  13. Dheda K, Huggett J, Chang J, Kim L, Bustin S, Johnson M, Rook G, Zumla A (2005) The implications of using an inappropriate reference gene for real-time reverse transcription PCR data normalization. Anal Biochem 344:141–143. https://doi.org/10.1016/j.ab.2005.05.022

    Article  CAS  PubMed  Google Scholar 

  14. Gutierrez L, Mauriat M, Guénin S, Pelloux J, Lefebvre JF, Louvet R, Rusterucci C, Moritz T (2008) The lack of a systematic validation of reference genes: a serious pitfall undervalued in reverse transcription-polymerase chain reaction (RT-PCR) analysis in plants. Plant Biotechnol J 6:609–618. https://doi.org/10.1111/j.1467-7652.2008.00346.x

    Article  CAS  PubMed  Google Scholar 

  15. Mascia T, Santovito E, Gallitelli D, Cillo F (2010) Evaluation of reference genes for quantitative reverse-transcription polymerase chain reaction normalization in infected tomato plants. Mol Plant Pathol 11:805–816. https://doi.org/10.1111/j.1364-3703.2010.00646.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang SQ, Dang KK, Niu JF, Qiang Y, Wang ZZ (2017) Screening of reference genes based on quantitative real-time PCR analysis in Polygonatum sibiricum. Genom Appl Biol 36:4770–4777

    Google Scholar 

  17. Lian T, Yang T, Liu G, Sun J, Dong C (2014) Reliable reference gene selection for Cordyceps militaris gene expression studies under different developmental stages and media. FEMS Microbiol Lett 356(1):97–104. https://doi.org/10.1111/1574-6968.12492

    Article  CAS  PubMed  Google Scholar 

  18. Zhou W, Wang S, Yang L, Sun Y, Zhang Q, Li B, Wang B, Li L, Wang D, Wang Z (2019) Reference genes for RT-PCR normalisation in different tissues, developmental stages, and stress conditions of Hypericum perforatum. PeerJ 7:e7133. https://doi.org/10.7717/peerj.7133

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wang X, Wu Z, Bao W, Hu H, Chen M, Chai T, Wang H (2019) Identification and evaluation of reference genes for quantitative real-time PCR analysis in Polygonum cuspidatum based on transcriptome data. BMC Plant Biol 19:498. https://doi.org/10.1186/s12870-019-2108-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li L, Wang K, Zhao M, Li S, Jiang Y, Zhu L et al (2019) Selection and validation of reference genes desirable for gene expression analysis by qRT-PCR in MeJA-treated ginseng hairy roots. PLoS ONE 14(12):e0226168. https://doi.org/10.1371/journal.pone.0226168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang M, Lu S (2016) Validation of suitable reference genes for quantitative gene expression analysis in Panax ginseng. Front Plant Sci 6:1259. https://doi.org/10.3389/fpls.2015.01259

    Article  PubMed  PubMed Central  Google Scholar 

  22. Qu R, Miao Y, Cui Y, Cao Y, Zhou Y, Tang X, Yang J, Wang F (2019) Selection of reference genes for the quantitative real-time PCR normalization of gene expression in Isatis indigotica fortune. BMC Molecular Biol 20:9. https://doi.org/10.1186/s12867-019-0126-y

    Article  Google Scholar 

  23. Li T, Wang J, Lu M, Zhang T, Qu X, Wang Z (2017) Selection and validation of appropriate reference genes for qRT-PCR analysis in Isatis indigotica Fort. Front Plant Sci 8:1139. https://doi.org/10.3389/fpls.2017.01139

    Article  PubMed  PubMed Central  Google Scholar 

  24. He Y, Yan H, Hua W, Huang Y, Wang Z (2016) Selection and validation of reference genes for quantitative real-time PCR in Gentiana macrophylla. Front Plant Sci 7:945. https://doi.org/10.3389/fpls.2016.00945

    Article  PubMed  PubMed Central  Google Scholar 

  25. Commission CP (2015) Pharmacopoeia of the People’s Republic of China, vol 1. China Medical Science Press, Beijing, pp 281–282

    Google Scholar 

  26. Li FJ, Wang ZC, Yang K (2008) Summary of recent research on Codonopsis pilosula. Technol Inf 35:422–440. https://doi.org/10.3969/j.issn.1001-9960.2008.35.331

    Article  Google Scholar 

  27. Li D, Li ZL (2013) The research status of that Codonopsis pilosula polysaccharide is as an immune adjuvant. Guide of China Medicine 11:56–57. https://doi.org/10.15912/j.cnki.gocm.2013.28.046

    Article  CAS  Google Scholar 

  28. Ullah A, Manghwar H, Shaban M, Khan AH, Akbar A, Ali U, Ali E, Fahad S (2018) Phytohormones enhanced drought tolerance in plants: a coping strategy. Environ Sci Pollut Res Int 25(33):33103–33118. https://doi.org/10.1007/s11356-018-3364-5

    Article  CAS  PubMed  Google Scholar 

  29. Ji JJ, Feng Q, Sun HF, Zhang XJ, Li XX, Li JK, Gao JP (2019) Response of bioactive metabolite and biosynthesis related genes to methyl jasmonate elicitation in Codonopsis pilosula. Molecules 24:533. https://doi.org/10.3390/molecules24030533

    Article  CAS  PubMed Central  Google Scholar 

  30. Gao JP, Wang D, Cao LY, Sun HF (2015) Transcriptome sequencing of Codonopsis pilosula and identification of candidate genes involved in polysaccharide biosynthesis. PLoS ONE 10:e0117342. https://doi.org/10.1371/journal.pone.0117342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang XL, Ji JJ, Gao JP (2018) Clone and expression of CpiGAPDH gene in Codonopsis pilosula. China J Chinese Materia Medica 43:712–720. https://doi.org/10.19540/j.cnki.cjcmm.20180105.009

    Article  Google Scholar 

  32. Zheng QH, Li J, Ji JJ, Li JK, Gao JP (2018) Cloning and expression analysis of the CpiSUC4 gene in Codonopsis pilosula. J Shanxi Univ (Nat Sci Edit) 41:831–838. https://doi.org/10.13451/j.cnki.shanxi.univ(nat.sci.).2018.03.27.002

    Article  Google Scholar 

  33. Yang J, Yang XZ, Li B, Lu XY, Kang JF, Cao XY (2020) Establishment of in vitro culture system of Codonopsis pilosula transgenic hairy root. B3 Biotech 10:137. https://doi.org/10.1007/s13205-020-2130-9

    Article  Google Scholar 

  34. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3(7):research 0034.1–research 0034.11. https://doi.org/10.1186/gb-2002-3-7-research0034

    Article  Google Scholar 

  35. Andersen CL, Jensen JL, Ørntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250. https://doi.org/10.1158/0008-5472.CAN-04-0496

    Article  CAS  PubMed  Google Scholar 

  36. Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: Best Keeper-Excel-based tool using pair-wise correlations. Biotechnol Lett 26:509–515. https://doi.org/10.1023/b:bile.0000019559.84305.47

    Article  CAS  PubMed  Google Scholar 

  37. Xie F, Xiao P, Chen D, Xu L, Zhang B (2012) miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol Biol 80:75–84. https://doi.org/10.1007/s11103-012-9885-2

    Article  CAS  Google Scholar 

  38. Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Schölkopf B, Weigel D, Lohmann JU (2005) A gene expression map of Arabidopsis thaliana development. Nat Genet 37:501–506. https://doi.org/10.1038/ng1543

    Article  CAS  PubMed  Google Scholar 

  39. Zhang L, Wu B, Zhao D, Li C, Shao F, Lu S (2014) Genome-wide analysis and molecular dissection of the SPL gene family in Salvia miltiorrhiza. J Integr Plant Biol 56:38–50. https://doi.org/10.1111/jipb.12111

    Article  CAS  PubMed  Google Scholar 

  40. Xu Z, Sun L, Zhou Y, Yang W, Cheng T, Wang J, Zhang Q (2015) Identification and expression analysis of the SQUAMOSA promoter-binding protein (SBP)-box gene family in Prunus mume. Mol Genet Genom 290:1701–1715. https://doi.org/10.1007/s00438-015-1029-3

    Article  CAS  Google Scholar 

  41. Zhou Q, Zhang S, Chen F, Liu B, Wu L, Li F, Zhang J, Bao M, Liu G (2018) Genome-wide identification and characterization of the SBP-box gene family in Petunia. BMC Genom 19(1):193. https://doi.org/10.1186/s12864-018-4537-9

    Article  CAS  Google Scholar 

  42. Cui LG, Shan JX, Shi M, Gao JP, Lin HX (2014) The miR156-SPL9-DFR pathway coordinates the relationship between development and abiotic stress tolerance in plants. Plant J 80:1108–1117. https://doi.org/10.1111/tpj.12712

    Article  CAS  PubMed  Google Scholar 

  43. Zheng LJ, Lin J, Huang XZ (2017) Screening of reference genes of quantitative real-time PCR (qRT-PCR) in Arabidopsis pumila. Genom Appl Biol 36:774–783. https://doi.org/10.13417/j.gab.036.000774

    Article  Google Scholar 

  44. Aleksandar R, Stefanie T, Mackay IM, Olfert L, Wolfgang S, Andreas N (2004) Guideline to reference gene selection for quantitative real-time PCR. Biochem Biophys Res Commun 313:856–862. https://doi.org/10.1016/j.bbrc.2003.11.177

    Article  CAS  Google Scholar 

  45. Kudo T, Sasaki Y, Terashima S, Matsuda-Imai N, Takano T, Saito M, Kanno M, Ozaki S, Suwabe K, Suzuki G, Watanabe M, Matsuoka M, Takayama S, Yano K (2016) Identification of reference genes for quantitative expression analysis using large-scale RNA-seq data of Arabidopsis thaliana and model crop plants. Genes Genet Syst 91:111–125. https://doi.org/10.1266/ggs.15-00065

    Article  CAS  PubMed  Google Scholar 

  46. Kenneth JL, Thomas D (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  Google Scholar 

  47. Zhang J, Xie W, Yu X, Zhang Z, Zhao Y, Wang N, Wang Y (2019) Selection of suitable reference genes for RT-qPCR gene expression analysis in Siberian wild rye (Elymus sibiricus) under different experimental conditions. Genes 10:451. https://doi.org/10.3390/genes10060451

    Article  CAS  PubMed Central  Google Scholar 

  48. Wang G, Tian C, Wang Y, Wan F, Hu L, Xiong A, Tian J (2019) Selection of reliable reference genes for quantitative RT-PCR in garlic under salt stress. PeerJ 7:e7319. https://doi.org/10.7717/peerj.7319

    Article  PubMed  PubMed Central  Google Scholar 

  49. Chen X, Mao Y, Huang S, Ni J, Lu W, Hou J, Wang Y, Zhao W, Li M, Wang Q, Wu L (2017) Selection of suitable reference genes for quantitative real-time PCR in Sapium sebiferum. Front Plant Sci 8:637. https://doi.org/10.3389/fpls.2017.00637

    Article  PubMed  PubMed Central  Google Scholar 

  50. Cheng T, Zhu F, Sheng J, Zhao L, Zhou F, Hu Z, Diao Y, Jin S (2019) Selection of suitable reference genes for quantitive real-time PCR normalization in Miscanthus lutarioriparia. Mol Biol Rep 46:4545–4553. https://doi.org/10.1007/s11033-019-04910-

    Article  CAS  PubMed  Google Scholar 

  51. Li Y, Qu Y, Wang Y, Bai X, Tian G, Liu Z, Li Y, Zhang K (2019) Selection of suitable reference genes for qRT-PCR analysis of Begonia semperflorens under stress conditions. Mol Biol Rep 46:6027–6037. https://doi.org/10.1007/s11033-019-05038-5

    Article  CAS  PubMed  Google Scholar 

  52. Tian C, Jiang Q, Wang F, Wang GL, Xu ZS, Xiong AS (2015) Selection of suitable reference genes for qPCR normalization under abiotic stresses and hormone stimuli in carrot leaves. PLoS ONE 10:e0117569. https://doi.org/10.1371/journal.pone.0117569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mallona I, Lischewski S, Weiss J, Hause B, Egea-Cortines M (2010) Validation of reference genes for quantitative real-time PCR during leaf and flower development in Petunia hybrida. BMC Plant Biol 10:4. https://doi.org/10.1186/1471-2229-10-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhu X, Li X, Chen W, Chen J, Lu W, Chen L (2012) Evaluation of new reference genes in papaya for accurate transcript normalization under different experimental conditions. PLoS ONE 7:e44405. https://doi.org/10.1371/journal.pone.0044405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wu ZJ, Tian C, Jiang Q, Li XH, Zhuang J (2016) Selection of suitable reference genes for qRT-PCR normalization during leaf development and hormonal stimuli in tea plant (Camellia sinensis). Sci Rep 6:19748. https://doi.org/10.1038/srep19748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the Major Project of Shaanxi Province, China (Grant No.2017ZDXM-SF-005) and The Youth Innovation Team of Shaanxi Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoyan Cao or Jiefang Kang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11033_2020_5501_MOESM1_ESM.tif

Figure S1. Gel map of total RNAs in different samples. Lines 1–13: one-month-old whole seedling, two-month-old seedling, three-month-old seedling, five-month-old seedling, one-year-old plant, roots, stems, leaves, flowers, NaCl stress, MeJA treatment, ABA treatment, and control, respectively.Supplementary file1 (TIF 2025 kb)

Table S1. Nucleotide sequences of 13 candidate reference genes. Supplementary file2 (DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Yang, X., Kuang, Z. et al. Selection of suitable reference genes for qRT-PCR expression analysis of Codonopsis pilosula under different experimental conditions. Mol Biol Rep 47, 4169–4181 (2020). https://doi.org/10.1007/s11033-020-05501-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05501-8

Keywords

Navigation