Skip to main content
Log in

Identification, characterization, and expression analysis of a serotonin receptor involved in the reproductive process of the Pacific abalone, Haliotis discus hannai

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Serotonin receptor (5-HT) is a biogenic amine acting as a neurotransmitter and neuromodulator that mediates various aspects of reproduction and gametogenesis. The full-length nucleotide sequence of Haliotis discus hannai encodes a protein of 417 amino acids with a predicted molecular mass of 46.54 kDa and isoelectric point of 8.94. The structural profile of 5-HTHdh displayed key features of G protein-coupled receptors, including seven hydrophobic transmembrane domains, putative N-linked glycosylation sites, and several phosphorylation consensus motifs. It shares the highest homology of its amino acid sequence with the 5-HT receptor from Haliotis asinina, and to lesser extent of human 5-HT receptor. The cloned sequence possesses two cysteine residues (Cys-115 and Cys-193), which are likely to form a disulfide bond. Phylogenetic comparison with other known 5-HT receptor genes revealed that the 5-HTHdh is most closely related to the 5-HTHa receptor. The three-dimensional structure of the 5-HTHdh showed multiple alpha helices which is separated by a helix-loop-helix (HLH) structure. Quantitative PCR demonstrated that the receptor mRNA was predominantly expressed in the pleuropedal ganglion. Significant differences in the transcriptional activity of the 5-HTHdh gene were observed in the ovary at the ripening stage. An exclusive expression was detected in pleuropedal ganglion, testis, and ovary at higher effective accumulative temperature (1000 °C). In situ hybridization showed that the 5-HTHdh expressing neurosecretory cells were distributed in the cortex of the pleuropedal ganglion. Our results suggest that 5-HTHdh synthesized in the neural ganglia may be involved in oocyte maturation and spawning of H. discus hannai.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tierney AJ (2001) Structure and function of invertebrate 5-HT receptors: a review. Comp Biochem Physiol A 128:791–804. https://doi.org/10.1016/S1095-6433(00)00320-2

    Article  CAS  Google Scholar 

  2. Prasad P, Ogawa S, Parhar IS (2015) Role of serotonin in fish reproduction. Front Neurosci 9:1–9. https://doi.org/10.3389/fnins.2015.00195

    Article  Google Scholar 

  3. Hoyer D, Hannon JP, Martin GR (2002) Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol Biochem Behav 71:533–554. https://doi.org/10.1016/S0091-3057(01)00746-8

    Article  CAS  Google Scholar 

  4. Li XC, Giot JF, Kuhl D, Hen R, Kandel ER (1995) Cloning and characterization of two related serotonergic receptors from the brain and the reproductive system of Aplysia that activate phospholipase C. J Neurosci 15:7585–7591. https://doi.org/10.1523/JNEUROSCI.15-11-07585.1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ghirardi M, Braha O, Hochner B, Montarolo PG, Kandel ER, Dale N (1992) Roles of PKA and PKC in facilitation of evoked and spontaneous transmitter release at depressed and nondepressed synapses in Aplysia sensory neurons. Neuron 9:479–489. https://doi.org/10.1016/0896-6273(92)90185-G

    Article  CAS  PubMed  Google Scholar 

  6. Martin KC, Michael D, Rose JC, Barad M, Casadio A, Zhu H, Kandel ER (1997) MAP kinase translocates into the nucleus of the pre-synaptic cell and is required for long-term facilitation in Aplysia. Neuron 18:899–912. https://doi.org/10.1016/S0896-6273(00)80330-X

    Article  CAS  PubMed  Google Scholar 

  7. Pecins-Thompson M, Brown NA, Kohama SG, Bethea CL (1996) Ovarian steroid regulation of tryptophan hydroxylase mRNA expression in rhesus macaques. J Neurosci 16:7021–7029. https://doi.org/10.1523/JNEUROSCI.16-21-07021.1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang C, Croll RP (2006) Effects of sex steroids on spawning in the sea scallop, Placopecten magellanicus. Aquaculture 256:423–432. https://doi.org/10.1016/j.aquaculture.2006.01.017

    Article  CAS  Google Scholar 

  9. Croll RP (1988) Distribution of monoamines within the central nervous system of the juvenile pulmonate snail, Achatina fulica. Brain Res 460:29–49. https://doi.org/10.1016/0006-8993(88)90427-1

    Article  CAS  PubMed  Google Scholar 

  10. Barlow LA, Truman JW (1991) Patterns of serotonin and SCP immunoreactivity during metamorphosis of the nervous system of the red abalone, Haliotis rufescens. J Neurobiol 23:829–844. https://doi.org/10.1002/neu.480230705

    Article  Google Scholar 

  11. Kuhl D, Kennedy TE, Barzilai A, Kandel ER (1992) Long-term sensitization training in Aplysia leads to an increase in the expression of BiP, the major protein chaperone in the ER. J Cell Biol 119:1069–1076. https://doi.org/10.1083/jcb.119.5.1069

    Article  CAS  PubMed  Google Scholar 

  12. Satterlie RA, Norekian TP, Jordan S, Kazilek CJ (1995) Modulation of swimming speed in the pteropod mollusc Clione limacina: role of a compartmental serotonergic system. J Exp Zool 198:895–904

    CAS  Google Scholar 

  13. Krantic S, Dube F, Guerrier P (1993) Evidence for a new subtype of serotonin receptor in oocytes of the Surf Clam Spisula solidissima. Gen Comp Endocrinol 90:125–131. https://doi.org/10.1006/gcen.1993.1067

    Article  CAS  PubMed  Google Scholar 

  14. Fong PP, Kyozuka K, Abdelghani H, Hardege JD, Ram JL (1994) In vivo and in vitro induction of germinal vesicle breakdown in a freshwater bivalve, the zebra mussel Dreissena polymorpha (Pallas). J Exp Zool 269:467–474. https://doi.org/10.1002/jez.1402690510

    Article  CAS  PubMed  Google Scholar 

  15. Ouimet T, Castellucci VF (1997) Gene expression and regulation of Aplysia californica prohormone convertases aPC1B and aPC2. J Neurochem 68:1031–1039. https://doi.org/10.1046/j.1471-4159.1997.68031031.x

    Article  CAS  PubMed  Google Scholar 

  16. Panasophonkul S, Apisawetakan S, Cummins SF, York PS, Degnan BM, Hanna PJ, Saitongdee P, Sobhon P, Sretarugsa P (2009) Molecular characterization and analysis of a truncated serotonin receptor gene expressed in neural and reproductive tissues of abalone. Histochem Cell Biol 131:629–642. https://doi.org/10.1007/s00418-009-0555-7

    Article  CAS  PubMed  Google Scholar 

  17. Vaca AA, Alfaro J (2000) Ovarian maturation and spawning in the white shrimp, Penaeus vannamei, by serotonin injection. Aquaculture 182:373–385. https://doi.org/10.1016/S0044-8486(99)00267-7

    Article  CAS  Google Scholar 

  18. Wang C, Croll RP (2003) Effects of sex steroids on in vitro gamete release in the sea scallop, Placopecten magellanicus. Invertebr Reprod Dev 44:89–100. https://doi.org/10.1080/07924259.2003.9652559

    Article  CAS  Google Scholar 

  19. Zatylny C, Durantou F, Boucaud-Camou E, Henry J (2000) Evidence of 5-hydroxytryptamine synthesis in the follicles of Sepia oficinalis and direct involvement in the control of egg-laying. Mol Reprod Dev 55:182–188. https://doi.org/10.1002/(SICI)1098-2795(200002)55:2%3c182:AID-MRD7%3e3.0.CO;2-B

    Article  CAS  PubMed  Google Scholar 

  20. Garnerot F, Pellerin J, Blaise C, Mathieu M (2006) Immunohistochemical localization of serotonin (5-hydroxytryptamine) in the gonad and digestive gland of Mya arenaria (Mollusca: Bivalvia). Gen Comp Endocrinol 149:278–284. https://doi.org/10.1016/j.ygcen.2006.06.008

    Article  CAS  PubMed  Google Scholar 

  21. Wang Q, He M (2014) Molecular characterization and analysis of a putative 5-HT receptor involved in reproduction process of the pearl oyster Pinctada fucata. Gen Comp Endocrinol 204:71–79. https://doi.org/10.1016/j.ygcen.2014.05.010

    Article  CAS  PubMed  Google Scholar 

  22. Tanabe T, Osada M, Kyozuka K, Inaba K, Kijima A (2006) A novel oocyte maturation arresting factor in the central nervous system of scallops inhibits serotonin-induced oocyte maturation and spawning of bivalve mollusks. Gen Comp Endocrinol 147:352–361. https://doi.org/10.1016/j.ygcen.2006.02.004

    Article  CAS  PubMed  Google Scholar 

  23. Barbas D, Zappulla JP, Angers S, Bouvier M, Castellucci VF, Des Groseillers L (2002) Functional characterization of a novel serotonin receptor (5-HTap2) expressed in the CNS of Aplysia californica. J Neurochem 80:335–345. https://doi.org/10.1046/j.0022-3042.2001.00703.x

    Article  CAS  PubMed  Google Scholar 

  24. Panasophonkul S, Sretarugsa P, Anunruang N, Apisawetakan S, Saitongdee P, Upathum ES, Poomtong T, Hanna PJ, Sobhon P (2004) Serotonergic and FMRF-amidergic neurons in the nerve ganglia of Haliotis asinina Linnaeus. J Shellfish Res 23:1087–1095

    Google Scholar 

  25. Gerhardt CC, Leysen JE, Planta RJ, Vreugdenhil E, Heerikhuizen HV (1996) Functional characterization of a 5-HT2 receptor cDNA cloned from Lymnaea stagnalis. Eur J Pharmacol 311:249–258. https://doi.org/10.1016/0014-2999(96)00410-4

    Article  CAS  PubMed  Google Scholar 

  26. Sugamori KS, Sunahara RK, Guan HC, Bulloch AG, Tensen CP, Seeman P (1993) Serotonin receptor cDNA cloned from Lymnaea stagnalis. Proc Natl Acad Sci USA 90:11–15. https://doi.org/10.1073/pnas.90.1.11

    Article  CAS  PubMed  Google Scholar 

  27. Angers A, Storozhuk MV, Duchaine T, Castellucci VF, DesGroseillers L (1998) Cloning and functional expression of an Aplysia 5-HT receptor negatively coupled to adenylate cyclase. J Neurosci 18:5586–5593. https://doi.org/10.1523/JNEUROSCI.18-15-05586.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tanabe T, Yuan Y, Nakamura S, Itoh N, Takahashi KG, Osada M (2010) The role in spawning of a putative serotonin receptor isolated from the germ and ciliary cells of the gonoduct in the gonad of the Japanese scallop, Patinopecten yessoensis. Gen Comp Endocrinol 166:620–627. https://doi.org/10.1016/j.ygcen.2010.01.014

    Article  CAS  PubMed  Google Scholar 

  29. Zhang GF, Fang XD, Guo XM, Li L, Luo RB, Xu F (2012) The oyster genome reveals stress adaptation and complexity of shell formation. Nature 490:49–54. https://doi.org/10.1038/nature11413

    Article  CAS  PubMed  Google Scholar 

  30. Cubero-Leon E, Ciocan CM, Hill EM, Osada M, Kishida M, Itoh N (2010) Estrogens disrupt serotonin receptor and cyclooxygenase mRNA expression in the gonads of mussels (Mytilus edulis). Aquat Toxicol 98:178–187. https://doi.org/10.1016/j.aquatox.2010.02.007

    Article  CAS  PubMed  Google Scholar 

  31. Estes JA, Lindberg DR, Wray C (2005) Evolution of large body size in abalones (Haliotis): patterns and implications. Paleobiology 31:591–606. https://doi.org/10.1666/04059.1

    Article  Google Scholar 

  32. Suleria HA, Masci PP, Gobe GC, Osborne SA (2015) Therapeutic potential of abalone and status of bioactive molecules: a comprehensive review. Crit Rev Food Sci Nutr 57:1742–1748. https://doi.org/10.1666/04059.110.1080/10408398.2015.1031726

    Article  Google Scholar 

  33. Kim KS, Kim MA, Sohn YC (2019) Molecular characterization, expression analysis, and functional properties of multiple 5-hydroxytryptamine receptors in Pacific abalone (Haliotis discus hannai). Gen Comp Endocrinol 276:52–59. https://doi.org/10.1016/j.ygcen.2019.03.001

    Article  CAS  PubMed  Google Scholar 

  34. Alva V, Nam SZ, Söding J, Lupas AN (2016) The MPI bioinformatics Toolkit as an integrative platform for advanced protein sequence and structure analysis. Nucleic Acids Res 44((Web Server issue)):410–415. https://doi.org/10.1093/nar/gkw348

    Article  CAS  Google Scholar 

  35. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD, Higgins DG (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539. https://doi.org/10.1038/msb.2011.75

    Article  PubMed  PubMed Central  Google Scholar 

  36. Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ (2009) Jalview version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25:1189–1191. https://doi.org/10.1093/bioinformatics/btp033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hofmann K, StoVel W (1993) TMbase—a database of membrane spanning proteins segments. Biol Chem 374:166

    Google Scholar 

  38. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. https://doi.org/10.1093/molbev/mst197

    Article  CAS  Google Scholar 

  39. Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y (2015) The I-TASSER suite: protein structure and function prediction. Nat Methods 12:7–8. https://doi.org/10.1038/nmeth.3213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆ct method. Methods 25:402–408

    Article  CAS  Google Scholar 

  41. Mapara S, Parries S, Quarrington C, Ahn KC, Gallin WJ, Goldberg JI (2008) Identification, molecular structure and expression of two cloned serotonin receptors from the pond snail, Helisoma trivolvis. J Exp Biol 211:900–910. https://doi.org/10.1242/jeb.013953

    Article  CAS  PubMed  Google Scholar 

  42. Baldwin JM (1993) The probable arrangement of the helices in G protein-coupled receptors. EMBO J 12:1693–1703. https://doi.org/10.1002/j.1460-2075.1993.tb05814.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bockaert J, Pin JP (1999) Molecular tinkering of G protein-coupled receptors: an evolutionary success. EMBO J 18:1723–1729. https://doi.org/10.1093/emboj/18.7.1723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Oliviera L, Paiva ACM, Sander C, Vriend G (1994) A common step for signal transduction in G protein-coupled receptors. Trends Pharmacol Sci 15:170–172. https://doi.org/10.1016/0165-6147(94)90137-6

    Article  Google Scholar 

  45. Scheer A, Fanelli F, Costa T, De Benedetti PG, Cotecchia S (1996) Constitutively active mutants of the α1β-adrenergic receptor: role of highly conserved polar amino acids in receptor activation. EMBO J 15:3566–3578

    Article  CAS  Google Scholar 

  46. Ali ES, Hua J, Wilson CH, Tallis GA, Zhou FH, Rychkov GY, Barritt GJ (2016) The glucagon-like peptide-1 analogue exendin-4 reverses impaired intracellular Ca2 + signalling in steatotic hepatocytes. Biochim Biophys Acta 1863:2135–2146. https://doi.org/10.1016/j.bbamcr.2016.05.006

    Article  CAS  PubMed  Google Scholar 

  47. Shukla R, Watakabe A, Yamamori T (2014) mRNA expression profile of serotonin receptor subtypes and distribution of serotonergic terminations in marmoset brain. Front Neural Circ 8:52. https://doi.org/10.3389/fncir.2014.00052

    Article  CAS  Google Scholar 

  48. Osredkar D, Krzan M (2009) Expression of serotonin receptor subtypes in rat brain and astrocyte cell cultures: an age-and tissue-dependent process. Period Biol 111:129–135

    CAS  Google Scholar 

  49. Jensen TN, Nielsen J, Frederiksen K, Ebert B (2006) Molecular cloning and pharmacological characterization of serotonin 5-HT (3A) receptor subtype in dog. Eur J Pharmacol 538:23–31. https://doi.org/10.1016/j.ejphar.2006.03.050

    Article  CAS  PubMed  Google Scholar 

  50. Berumen LC, Rodríguez A, Miledi R, García-Alcocer G (2012) Serotonin receptors in hippocampus. Sci World J 2012:823493. https://doi.org/10.1100/2012/823493

    Article  CAS  Google Scholar 

  51. Khan NA, Troutaud D, Moulinoux JPH, Deschaux P (1996) Characterization of serotonin receptors in fish brain: polyamines inhibit the binding process. Neurosci Res Commun 18:97–105. https://doi.org/10.1002/(SICI)1520-6769(199603)18:2%3c97:AID-NRC145%3e3.0.CO;2-8

    Article  CAS  Google Scholar 

  52. Mengod G, Vilaró MT, Raurich A, López-Giménez JF, Cortés R, Palacios JM (1996) 5-HT receptors in mammalian brain: receptor autoradiography and in situ hybridization studies of new ligands and newly identified receptors. Histochem J 28:747–758

    Article  CAS  Google Scholar 

  53. Lidow MS, Goldman-Rakic PS, Gallager DW, Rakic P (1989) Quantitative autoradiographic mapping of serotonin 5-HT1 and 5-HT2 receptors and uptake sites in the neocortex of the rhesus monkey. J Comp Neurol 280:27–42. https://doi.org/10.1002/cne.9028001

    Article  CAS  PubMed  Google Scholar 

  54. Hornung JP, Celio MR (1992) The selective innervation by serotoninergic axons of calbindin-containing inter neurons in the neocortex and hippocampus of the marmoset. J Comp Neurol 320:457–467. https://doi.org/10.1002/cne.903200404

    Article  CAS  PubMed  Google Scholar 

  55. Wilson MA, Molliver ME (1991) The organization of serotonergic projections to cerebral cortex in primates: regional distribution of axon terminals. Neuroscience 44:537–553. https://doi.org/10.1016/0306-4522(91)90076-Z

    Article  CAS  PubMed  Google Scholar 

  56. Burnet PW, Eastwood SL, Lacey K, Harrison PJ (1995) The distribution of 5-HT1A and 5-HT2A receptor mRNA in human brain. Brain Res 676:157–168

    Article  CAS  Google Scholar 

  57. Raghanti MA, Stimpson CD, Marcinkiewicz JL, Erwin JM, Hof PR, Sherwood CC (2008) Differences in cortical serotonergic innervation among humans, chimpanzees, and macaque monkeys: a comparative study. Cereb Cortex 18:584–597. https://doi.org/10.1093/cercor/bhm089

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was a part of the project titled ‘Development of technology for abalone aquaculture using sperm cryopreservation (Grant No. 2018-2129)’ funded by the Ministry of Oceans and Fisheries, Korea.

Author information

Authors and Affiliations

Authors

Contributions

Kang Hee Kho supervised and wrote the manuscript, Md. Rajib Sharker executed the experiments and wrote the manuscript. Zahid Parvez Sukhan and Soo Cheol Kim assisted to perform the experiments and analyze the data. Won Kyo Lee did critical discussion with the manuscript.

Corresponding author

Correspondence to Kang Hee Kho.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

The article does not contain any studies with human subject or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11033_2019_5162_MOESM1_ESM.docx

Supplementary material 1 (DOCX 57 kb) Supplementary file 1 Semi-quantitative RT (reverse transcription)-PCR expression of serotonin receptor in Pacific abalone tissues. RPL-5 was used as an internal control for normalization of mRNA expression in tissues.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharker, M.R., Sukhan, Z.P., Kim, S.C. et al. Identification, characterization, and expression analysis of a serotonin receptor involved in the reproductive process of the Pacific abalone, Haliotis discus hannai. Mol Biol Rep 47, 555–567 (2020). https://doi.org/10.1007/s11033-019-05162-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-019-05162-2

Keywords

Navigation