Skip to main content
Log in

High fructose-containing drinking water-induced steatohepatitis in rats is prevented by the nicotinamide-mediated modulation of redox homeostasis and NADPH-producing enzymes

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

An imbalance in the redox state, increased levels of lipid precursors and overactivation of de novo lipogenesis determine the development of fibrosis during nonalcoholic steatohepatitis (NASH). We evaluated the modulation of NADPH-producing enzymes associated with the antifibrotic, antioxidant and antilipemic effects of nicotinamide (NAM) in a model of NASH induced by excess fructose consumption. Male rats were provided drinking water containing 40% fructose for 16 weeks. During the last 12 weeks of fructose administration, water containing NAM was provided to some of the rats for 5 h/day. The biochemical profiles and the ghrelin, leptin, lipoperoxidation and TNF-α levels in serum and the glucose-6-phosphate dehydrogenase (G6PD), malic enzyme (ME) and NADP+-dependent isocitric dehydrogenase (IDP) levels, the reduced/oxidized glutathione (GSH/GSSG) and reduced/oxidized nicotinamide adenine dinucleotide (phosphate) (NAD(P)H/NAD(P)+) ratios, and the levels of various lipogenic and fibrotic markers in the liver were evaluated. The results showed that hepatic fibrosis induced by fructose consumption was associated with weight gain, hunger-satiety system dysregulation, hyperinsulinemia, dyslipidemia, lipoperoxidation and inflammation. Moreover, increased levels of hepatic G6PD and ME activity and expression, the NAD(P)H/NAD(P)+ ratios, and GSSG concentration and increased expression of lipogenic and fibrotic markers were detected, and these alterations were attenuated by NAM administration. Specifically, NAM diminished the activity and expression of G6PD and ME, and this effect was associated with a decrease in the NADPH/NADP+ ratios, increased GSH levels and decreased lipoperoxidation and inflammation, ameliorating fibrosis and NASH development. NAM reduces liver steatosis and fibrosis by regulating redox homeostasis through a G6PD- and ME-dependent mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Farzaei MH, Zobeiri M, Parvizi F, El-Senduny FF, Marmouzi I, Coy-Barrera E, Naseri R, Nabavi SM, Rahimi R, Abdollahi M (2018) Curcumin in liver diseases: a systematic review of the cellular mechanisms of oxidative stress and clinical perspective. Nutrients 10(7):1–28

    Article  CAS  Google Scholar 

  2. Ramachandran P, Iredale JP (2012) Macrophagues: central regulators of hepatic fibrogenesis and fibrosis resolution. J Hepatol 56:1417–1419

    Article  PubMed  Google Scholar 

  3. Gendron MC, Schrantz N, Metivier D, Kroemer G, Maciorowska Z, Sureau F, Sureau F, Koester S, Petit PX (2001) Oxidation of pyridine nucleotides during Fas and ceramide-induced apoptosis in Jurkat cells correlation with changes in mitochondria, glutathione depletion, intracellular acidification and caspase 3 activation. J Biochem 353:357–367

    Article  CAS  Google Scholar 

  4. Laliotis GP, Bizelis I, Rogdakis E (2010) Comparative approach of the novo fatty acid synthesis (Lipogenesis) between ruminant and non ruminant mammalian species: from biochemical level to the main regulatory lipogenic genes. Curr Genomics 1:168–183

    Article  Google Scholar 

  5. Hecker PA, Lionetti V, Ribeiro RF, Rastogi S, Brown BH, O’Connell KA, Cox JW, Shekar KC, Gamble DM, Sabbah HN, Leopold JA, Gupte SA, Recchia FA, Stanley WC (2013) Glucose-6-phosphate dehydrogenase deficiency increases redox stress and moderately accelerates the development of heart failure. Circ Heart Fail 6:118–126

    Article  CAS  PubMed  Google Scholar 

  6. Kletzien RF, Harris PK, Foellmi LA (1994) Glucose-6-phosphate dehydrogenase: a housekeeping enzymes subject to tissue specific regulation by hormones, nutrients and oxidants stress. FASEB 8:174–181

    Article  CAS  Google Scholar 

  7. Ferre P, Dentin R, Tomas-Cobos L, Foufelle F, Leopold J, Girard J, Postic C (2012) Glucose-6-phosphate dehydrogenase rather than xylulose-5-phosphate is required for the activation of ChREBP in response to glucose in the liver. J Hepatol 56:199–209

    Article  PubMed  CAS  Google Scholar 

  8. Torrres-Ramirez N, Baiza-Gutman LA, Garcia-Macedo R, Ortega-Camarillo C, Contreras-Ramos A, Medina-Navarro R, Cruz M, Ibáñez-Hernández MA, Díaz-Flores M (2013) Nicotinamide a glucose-6-phosphate dehydrogenase non-competitive mixed inhibitor, modifies redox balance and lipid accumulation in 3T3-cells. Life Sci 93:975–985

    Article  CAS  Google Scholar 

  9. Angeles-Mejia S, Baiza-GutmanLA Ortega-Camarillo C, Medina-Navarro R, Sanchez-Becerra MC, Damasi-Santana L, Cruz M, Hernández-Pérez E, Díaz-Flores M (2018) Nicotinamide prevents sweet beverage-induced hepatic steatosis in rats by regulating the G6PD, NADPH/NADP+ and GSH/GSSG ratios and reducing oxidative and inflammatory stress. Eur J Pharmacol 818:499–507

    Article  CAS  Google Scholar 

  10. Park JW, Lee SM, Koh HJ, Park DC, Song BJ, Huh TL (2002) Cytosolic NADP(+)-dependent isocitrate dehydrogenase status modulates oxidative damage to cells. Free Radic Biol Med 32(11):1185–1196

    Article  PubMed  Google Scholar 

  11. Koh HJ, Lee SM, Son BG, Lee SH, Ryoo ZY, Chang KT, Park JW, Park DC, Song BJ, Veech RL, Song H, Huh TL (2004) Cytosolic NADP+-dependent isocitrate dehydrogenase plays a key role in lipid metabolism. J Biol Chem 279:39968–39974

    Article  CAS  PubMed  Google Scholar 

  12. Pongratz RL, Kibbey RG, Shulman GI, Cline GW (2007) Cytosolic and mitochondrial malic enzyme isoforms differentially control insulin secretion. J Biol Chem 282:200–207

    Article  CAS  PubMed  Google Scholar 

  13. Rzezniczak TZ, Merritt TJ (2012) Interactions of NADP-reducing enzymes across varying environmental conditions: a model of biological complexity. G3: Genes G3(2):1613–1623

    Article  CAS  Google Scholar 

  14. Basaranoglu M, Basaranoglu G, Sabuncu T, Sentürk H (2013) Fructose as a key player in the development of fatty liver disease. World J Gastroenterol 19:1166–1172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ter Horst KW, Serlie MJ (2017) Fructose consumption, lipogenesis, and non-alcoholic fatty liver disease. Nutrients 9:1–20

    Google Scholar 

  16. Caton PW, Kieswich J, Yaqoob MM, Holness MJ, Sugden MC (2011) Nicotinamide mononucleotide protects against pro-inflammatory cytokine-mediated impairment of mouse islet function. Diabetologia 201(54):3083–3092

    Article  CAS  Google Scholar 

  17. Shi Y, Zhang L, Jiang R, Chen W, Zheng W, Chen L, Tang L, Li L, Li L, Tang W, Wang Y, Yu Y (2012) Protective effects of nicotinamide against acetaminophen-induced acute liver injury. Int Immunopharmacol 14:530–537

    Article  CAS  PubMed  Google Scholar 

  18. Shibata K, Fukuwatari T, Suzuki C (2014) Pharmacological doses of nicotinic acid and nicotinamide are independently metabolized in rats. J Nutr Sci Vitaminol 60:86–93

    Article  CAS  PubMed  Google Scholar 

  19. Varela-Rey M, Martínez-López N, Fernández-Ramos D, Embade N, Calvisi DF, Woodhoo A, Rodríguez J, Fraga MF, Julve J, Rodríguez-Millán E, Frades I, Torres L, Luka Z, Wagner C, Esteller M, Lu SC, Martínez-Chantar ML, Mato JM (2010) Fatty liver and fibrosis in glycine N-methyltransferase knockout mice is prevented by nicotinamide. Hepatology 52:105–114

    Article  CAS  PubMed  Google Scholar 

  20. Hecker PA, Mapanga RF, Kimar CP, Ribeiro RF Jr, Brown BH, O’Connell KA, Cox JW, Shekar KC, Asemu G, Essop MF, Stanley WC (2012) Effects of glucose-6-phosphate dehydrogenase deficiency on the metabolic and cardiac responses to obesogenic or high-fructose diets. Am J Physiol Endocrinol Metab 303:E959–E972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wheeler MC, Tronconi MA, Drincovich MF, Andreo CS, Flügge UI, Maurino VG (2005) A comprehensive analysis of the NADP-malic enzyme gene family of Arabidopsis. Plant Physiol 139:39–51

    Article  CAS  PubMed  Google Scholar 

  22. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  23. Tietze F (1969) Enzymatic method for quantitative determination of nanogram amounts of total anoxidized glutathione. Anal Biochem 27:502–522

    Article  CAS  PubMed  Google Scholar 

  24. Jentzsch AM, Bachmann H, Fürst P, Biesalski HK (1996) Improved analysis of malondialdehyde in human body fluids. Free Radic Biol Med 20:251–256

    Article  CAS  PubMed  Google Scholar 

  25. Du L, Heaney AP (2012) Regulation of adipose differentiation by fructose and GluT5. Mol Endocrinol 26:773–1782

    Article  CAS  Google Scholar 

  26. Kaser S, Dobner J, Ress C, Rufinatscha K, Salzmann K, Salvenmoser W, Folie S, Wieser V, Moser P, Weiss G, Goebel G, Tilg H, Kaser S (2017) Fat-enriched rather than high-fructose diets promote whitening of adipose tissue in a sex-dependent manner. J Nutr Biochem 49:22–29

    Article  PubMed  CAS  Google Scholar 

  27. Dekker MJ, Su Q, Baker C, Rutledge AC, Adeli K (2010) Fructose: a highly lipogenic nutrient implicated in insulin resistance, hepatic steatosis, and the metabolic syndrome. Am J Physiol Endocrinol Metab 299:685–694

    Article  CAS  Google Scholar 

  28. Teff KL, Elliott SS, Tschöp M, Kieffer TJ, Rader D, Heiman M, Townsend RR, Keim NL, D’Alessio D, Havel PJ (2004) Dietary fructose reduces circulating insulin and leptin, attenuates postprandial suppression of ghrelin, and increases triglycerides in women. J Clin Endocrinol Metab 89:2963–2972

    Article  CAS  PubMed  Google Scholar 

  29. Tillman EJ, Morgan DA, Rahmouni K, Swoap SJ (2014) Three months of high-fructose feeding fails to induce excessive weight gain or leptin resistance in mice. PLoS ONE 9:1–8

    Article  CAS  Google Scholar 

  30. Villareal DT, Fontana L, Das SK, Redman L, Smith SR, Saltzman E, Bales C, Rochon J, Pieper C, Huang M, Lewis M, Schwartz AV (2016) Effect of two-year caloric restriction on bone metabolism and bone mineral density in non-obese younger adults: a randomized clinical trial. J Bone Miner Res 31:40–51

    Article  CAS  PubMed  Google Scholar 

  31. Pan WW, Myers MGJR (2018) Leptin and the maintenance of elevated body weight. Nat Rev Neurosci 19:95–105

    Article  CAS  PubMed  Google Scholar 

  32. Zhang SR, Fan XM (2015) Ghrelin-ghrelin O-acyltransferase system in the pathogenesis of nonalcoholic fatty liver disease. World J Gastroenterol 21:3214–3222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Van Name M, Giannini C, Santoro N, Jastreboff AM, Kubat J, Li F, Kursawe R, Savoye M, Duran E, Dziura J, Sinha R, Sherwin RS, Cline G, Caprio S (2015) Blunted suppression of acyl-ghrelin in response to fructose ingestion in obese adolescents: the role of insulin resistance. Obesity (Silver Spring) 23:653–661

    Article  CAS  Google Scholar 

  34. Liu J, Prudom CE, Nass R, Pezzoli SS, Oliveri MC, Johnson ML, Veldhuis P, Gordon DA, Howard AD, Witcher DR, Geysen HM, Gaylinn BD, Thorner MO (2008) Novel ghrelin assays provide evidence for independent regulation of ghrelin acylation and secretion in healthy young men. J Clin Endocrinol Metab 93:1980–1987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bursać BN, Djordjevic AD, Vasiljević AD, Milutinović DD, Veličković NA, Nestorović NM, Matić GM (2013) Fructose consumption enhances glucocorticoid action in rat visceral adipose tissue. J Nutr Biochem 24:1166–1172

    Article  PubMed  CAS  Google Scholar 

  36. Kovačević S, Nestorov J, Matić G, Elaković I (2014) Dietary fructose-related adiposity and glucocorticoid receptor function in visceral adipose tissue of female rats. Eur J Nutr 53:1409–1420

    Article  PubMed  CAS  Google Scholar 

  37. Yang G, Li C, Gong Y, Fang F, Tian H, Li J, Cheng X (2016) Assessment of insulin resistance in subjects with normal glucose tolerance, hyperinsulinemia with normal blood glucose tolerance, impaired glucose tolerance, and newly diagnosed type 2 diabetes (prediabetes insulin resistance research). J Diabetes Res 1:1–11

    Google Scholar 

  38. Sun RQ, Wang H, Zeng XY, Chan SM, Li SP, Jo E, Leung SL, Molero JC, Ye JM (2015) IRE1 impairs insulin signaling transduction of fructose-fed mice via JNK independent of excess lipid. Biochim Biophys Acta 1852:156–165

    Article  CAS  PubMed  Google Scholar 

  39. Shulman GI, Szendroedi J, Yoshimura T, Phielix E, Koliaki C, Marcucci M, Zhang D, Jelenik T, Müller J, Herder C, Nowotny P, Shulman GI, Roden M (2014) Role of diacylglycerol activation of PKCθ in lipid-induced muscle insulin resistance in humans. Proc Natl Acad Sci USA 111:9597–9602

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Havel PJ, Elliott SS, Keim NL, Stern JS, Teff K (2002) Fructose, weight gain, and the insulin resistance syndrome. Am J Clin Nutr 76:911–922

    Article  PubMed  Google Scholar 

  41. Kamada Y, Ono M, Hyogo H, Fujii H, Sumida Y, Yamada M, Mori K, Tanaka S, Maekawa T, Ebisutani Y, Yamamoto A, Takamatsu S, Yoneda M, Kawada N, Chayama K, Saibara T, Takehara T, Miyoshi E (2017) Use of Mac-2 binding protein as a biomarker for nonalcoholic fatty liver disease diagnosis. Hepatol Commun 1:780–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Boland ML, Oldham S, Boland BB, Will S, Lapointe JM, Guionaud S, Rhodes CJ, Trevaskis JL (2018) Nonalcoholic steatohepatitis severity is defined by a failure in compensatory antioxidant capacity in the setting of mitochondrial dysfunction. World J Gastroenterol 24:1748–1765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fu S, Watkins SM, Hotamisligil GS (2012) The role of endoplasmic reticulum in hepatic lipid homeostasis and stress signaling. Cell Metab 15:623–634

    Article  CAS  PubMed  Google Scholar 

  44. Ducker GS, Rabinowitz JD (2017) One-carbon metabolism in health and disease. Cell Metab 25:27–42

    Article  CAS  PubMed  Google Scholar 

  45. Fan J, Ye J, Kamphorst JJ, Shlomi T, Thompson CB, Rabinowitz JD (2014) Quantitative flux analysis reveals folate-dependent NADPH production. Nature 510:298–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Varma V, Boros LG, Nolen GT, Chang CW, Wabitsch M, Beger RD, Kaput J (2015) Fructose alters intermediary metabolism of glucose in human adipocytes and diverts glucose to serine oxidation in the one-carbon cycle energy producing pathway. Metabolites 5(2):364–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sorbi D, Boynton J, Lindor KD (1999) The ratio of aspartate aminotransferase to alanine aminotransferase: potential value in differentiating nonalcoholic steatohepatitis from alcoholic liver disease. Am J Gastroenterol 94:1018–1022

    Article  CAS  PubMed  Google Scholar 

  48. Verma S, Jensen D, Hart J, Mohanty SR (2013) Predictive value of ALT levels for non-alcoholic steatohepatitis (NASH) and advanced fibrosis in non-alcoholic fatty liver disease (NAFLD). Liver Int 33:1398–1405

    Article  CAS  PubMed  Google Scholar 

  49. Pogribny IP, Kutanzi K, Melnyk S, de Conti A, Tryndyak V, Montgomery B, Pogribna M, Muskhelishvili L, Latendresse JR, James SJ, Beland FA, Rusyn I (2013) Strain-dependent dysregulation of one-carbon metabolism in male mice is associated with choline- and folate-deficient diet-induced liver injury. FASEB J 27(6):2233–2243

    Article  CAS  PubMed  Google Scholar 

  50. Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30:1191–1212

    Article  CAS  PubMed  Google Scholar 

  51. Mailloux RJ, Treberg JR (2016) Protein S-glutathionlyation links energy metabolism to redox signaling in mitochondria. Redox Biol 8:110–118

    Article  CAS  PubMed  Google Scholar 

  52. Dou X, Li S, Hu L, Ding L, Ma Y, Ma W, Chai H, Song Z (2018) Glutathione disulfide sensitizes hepatocytes to TNFα-mediated cytotoxicity via IKK-β S-glutathionylation: a potential mechanism underlying non-alcoholic fatty liver disease. Exp Mol Med 50:1–7

    Article  PubMed  CAS  Google Scholar 

  53. Piemonte F, Petrini S, Gaeta LM, Tozzi G, Bertini E, Devito R, Boldrini R, Marcellini M, Ciacco E, Nobili V (2008) Protein glutathionylation increases in the liver of patients with non-alcoholic fatty liver disease. J Gastroenterol Hepatol 23:457–464

    Article  CAS  Google Scholar 

  54. Salati LM, Amir-Ahmady B (2001) Dietary regulation of expression of glucose-6-phosphate dehydrogenase. Annu Rev Nutr 21:121–140

    Article  CAS  PubMed  Google Scholar 

  55. Janevski M, Ratnayake S, Siljanovski S, McGlynn MA, Cameron-Smith D, Lewandowski P (2012) Fructose containing sugars modulate mRNA of lipogenic genes ACC and FAS and protein levels of transcription factors ChREBP and SREBP1c with no effect on body weight or liver fat. Food Funct 3:141–149

    Article  CAS  PubMed  Google Scholar 

  56. Herman MA, Samuel VT (2016) The sweet path to metabolic demise: fructose and lipid synthesis. Trends Endocrinol Metab 27:719–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mastrocola R, Nigro D, Chiazza F, Medana C, Dal Bello F, Boccuzzi G, Collino M, Aragno M (2016) Fructose-derived advanced glycation end-products drive lipogenesis and skeletal muscle reprogramming via SREBP-1c dysregulation in mice. Free Radic Biol Med 91:224–235

    Article  CAS  PubMed  Google Scholar 

  58. Iizuka K (2017) The role of carbohydrate response element binding protein in intestinal and hepatic fructose metabolism. Nutrients 9:1–12

    Article  CAS  Google Scholar 

  59. Novo E, Marra F, Zamara E, Valfrè di Bonzo L, Caligiuri A, Cannito S, Antonaci C, Colombatto S, Pinzani M, Parola M (2006) Dose dependent and divergent effects of superoxide anion on cell death, proliferation, and migration of activated human hepatic stellate cells. Gut 55:90–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Friedman SL (2008) Mechanisms of hepatic fibrogenesis. Gastroenterology 134:1655–1669

    Article  CAS  PubMed  Google Scholar 

  61. Kavanagh K, Cydylo MA, Davis AT (2017) Fatty liver promotes fibrosis in monkeys consuming high fructose. Obesity 25:290–293

    Article  PubMed  CAS  Google Scholar 

  62. Rector RS, Panasevich MR, Meers GM, Linden MA, Perfield JW, Fritsche KL, Wankhade UD, Chintapalli SV, Shankar K, Ibdah JA (2018) High-fat, high-fructose, high-cholesterol feeding causes severe NASH and cecal microbiota dysbiosis in juvenile Ossabaw swine. Am J Physiol Endocrinol Metab 314:78–92

    Article  CAS  Google Scholar 

  63. Xie XW (2017) Liquiritigenin attenuates cardiac injury induced by high fructose-feeding through fibrosis and inflammation suppression. Biomed Pharmacother 86:694–704

    Article  CAS  PubMed  Google Scholar 

  64. Schöndorf DC, Ivanyuk D, Baden P, Sanchez-Martinez A, De Cicco S, Yu C, Giunta I, Schwarz LK, Di Napoli G, Panagiotakopoulou V, Nestel S, Keatinge M, Pruszak J, Bandmann O, Heimrich B, Gasser T, Whitworth AJ, Deleidi M (2018) The NAD+ precursor nicotinamide riboside rescues mitochondrial defects and neuronal loss in iPSC and fly models of parkinson’s disease. Cell Rep 23:2976–2988

    Article  PubMed  CAS  Google Scholar 

  65. Khan NA, Auranen M, Paetau I, Pirinen E, Euro L, Forsström S, Pasila L, Velagapudi V, Carroll CJ, Auwerx J, Suomalainen A (2014) Effective treatment of mitochondrial myopathy by nicotinamide riboside, a vitamin B3. MBO Mol Med 6:721–731

    Article  CAS  Google Scholar 

  66. Yang SJ, Choi JM, Kim L, Park SE, Rhee EJ, Lee WY, Oh KW, Park SW, Park CY (2014) Nicotinamide improves glucose metabolism and affects the hepatic NAD-sirtuin pathway in a rodent model of obesity and type 2 diabetes. J Nutr Biochem 25:66–72

    Article  CAS  PubMed  Google Scholar 

  67. Jang SY, Kang HT, Hwang ES (2012) Nicotinamide-induced mitophagy: event mediated by high NAD+/NADH ratio and SIRT1 protein activation. J Biol Chem 287:19304–19314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the assistance provided by Dra. Mariela Sánchez Claudio. This research study was funded by Fomento de Investigación en Salud, Instituto Mexicano del Seguro Social (FIS/IMSS/PROT/G15/1424 and FIS/IMSS/PROT/MD/17/1685) and CONACYT (Scholarship 262758).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Díaz-Flores.

Ethics declarations

Conflict of interest

All authors of this research declare that there are no conflicts of any kind.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loza-Medrano, S.S., Baiza-Gutman, L.A., Manuel-Apolinar, L. et al. High fructose-containing drinking water-induced steatohepatitis in rats is prevented by the nicotinamide-mediated modulation of redox homeostasis and NADPH-producing enzymes. Mol Biol Rep 47, 337–351 (2020). https://doi.org/10.1007/s11033-019-05136-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-019-05136-4

Keywords

Navigation