Skip to main content
Log in

CRISPR/Cas9-mediated gfp gene inactivation in Arabidopsis suspension cells

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Targeted genome editing using CRISPR/Cas9 is a promising technology successfully verified in various plant species; however, it has hardly been used in plant cell suspension cultures. Here, we describe a successful knockout of a green fluorescent protein (gfp) reporter gene in Arabidopsis cell culture. We transformed seven transgenic suspension cell lines carrying one to three gfp gene copies with a binary vector containing genes coding for Cas9 and guide RNAs targeting the gfp gene. We detected the site-specific mutations by restriction analysis of a gfp amplicon. DNA sequencing of the PCR products confirmed high diversity of insertion-deletion mutations in the cell lines after the editing. We also analyzed gfp mRNA expression by real-time PCR and observed a decrease in gfp transcription after the target site modification. We can conclude that the CRISPR/Cas9 system can be successfully used for introducing site-specific mutations into the genome of cultured suspension cells of Arabidopsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Datsenko K, Pougach K, Tikhonov A et al (2012) Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system. Nat Commun 3:945. https://doi.org/10.1038/ncomms1937

    Article  CAS  PubMed  Google Scholar 

  2. Garneau JE, Dupuis MÈ, Villion M et al (2010) The CRISPR/cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468:67–71. https://doi.org/10.1038/nature09523

    Article  CAS  PubMed  Google Scholar 

  3. Hsu PD, Scott DA, Weinstein JA et al (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31:827–832. https://doi.org/10.1038/nbt.2647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Arora L, Narula A (2017) Gene editing and crop improvement using CRISPR-Cas9 system. Front Plant Sci. https://doi.org/10.3389/fpls.2017.01932

    Article  PubMed  PubMed Central  Google Scholar 

  5. Demirci Y, Zhang B, Unver T (2018) CRISPR/Cas9: an RNA-guided highly precise synthetic tool for plant genome editing. J Cell Physiol 233:1844–1859. https://doi.org/10.1002/jcp.25970

    Article  CAS  PubMed  Google Scholar 

  6. Soyars CL, Peterson BA, Burr CA, Nimchuk ZL (2018) Cutting edge genetics: CRISPR/Cas9 editing of plant genomes. Plant Cell Physiol 59:1608–1620. https://doi.org/10.1093/pcp/pcy079

    Article  CAS  PubMed  Google Scholar 

  7. Yu Z, Chen Q, Chen W et al (2017) Multigene editing via CRISPR/Cas9 guided by a single-sgRNA seed in Arabidopsis. J Integr Plant Biol 60:376–381. https://doi.org/10.1111/jipb.12622

    Article  CAS  Google Scholar 

  8. Durr J, Papareddy R, Nakajima K, Gutierrez-Marcos J (2018) Highly efficient heritable targeted deletions of gene clusters and non-coding regulatory regions in Arabidopsis using CRISPR/Cas9. Sci Rep 8:1–11. https://doi.org/10.1038/s41598-018-22667-1

    Article  CAS  Google Scholar 

  9. Schiml S, Fauser F, Puchta H (2014) The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny. Plant J 80:1139–1150. https://doi.org/10.1111/tpj.12704

    Article  CAS  PubMed  Google Scholar 

  10. Peterson BA, Haak DC, Nishimura MT et al (2016) Genome-wide assessment of efficiency and specificity in CRISPR/Cas9 mediated multiple site targeting in arabidopsis. PLoS ONE 11:1–11. https://doi.org/10.1371/journal.pone.0162169

    Article  CAS  Google Scholar 

  11. Zhao C, Zhang Z, Xie S et al (2016) Mutational evidence for the critical role of CBF genes in cold acclimation in Arabidopsis. Plant Physiol. https://doi.org/10.1104/pp.16.00533

    Article  PubMed  PubMed Central  Google Scholar 

  12. Tekoah Y, Shulman A, Kizhner T et al (2015) Large-scale production of pharmaceutical proteins in plant cell culture-the protalix experience. Plant Biotechnol J 13:1199–1208. https://doi.org/10.1111/pbi.12428

    Article  CAS  PubMed  Google Scholar 

  13. Santos RB, Abranches R, Fischer R et al (2016) Putting the spotlight back on plant suspension cultures. Front Plant Sci 7:1–12. https://doi.org/10.3389/fpls.2016.00297

    Article  Google Scholar 

  14. Xu J, Dolan MC, Medrano G et al (2011) Green factory: plants as bioproduction platforms for recombinant proteins. Biotechnol Adv 30:1171–1184. https://doi.org/10.1016/j.biotechadv.2011.08.020

    Article  CAS  PubMed  Google Scholar 

  15. Zagorskaya AA, Deineko EV (2017) Suspension-cultured plant cells as a platform for obtaining recombinant proteins. Russ J Plant Physiol 64:795–807. https://doi.org/10.1134/S102144371705017X

    Article  CAS  Google Scholar 

  16. Rozov SM, Permyakova NV, Deineko EV (2018) Main strategies of plant expression system glycoengineering for producing humanized recombinant pharmaceutical p roteins. Biochemistry (Mosc) 83:215–232. https://doi.org/10.1134/S0006297918030033

    Article  CAS  Google Scholar 

  17. Hanania U, Ariel T, Tekoah Y et al (2017) Establishment of a tobacco BY2 cell line devoid of plant-specific xylose and fucose as a platform for the production of biotherapeutic proteins. Plant Biotechnol J 15:1120–1129. https://doi.org/10.1111/pbi.12702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mercx S, Smargiasso N, Chaumont F et al (2017) Inactivation of the β(1,2)-xylosyltransferase and the α(1,3)-fucosyltransferase genes in Nicotiana tabacum BY-2 cells by a multiplex CRISPR/Cas9 strategy results in glycoproteins without plant-specific glycans. Front Plant Sci 8:1–11. https://doi.org/10.3389/fpls.2017.00403

    Article  Google Scholar 

  19. Mercx S, Tollet J, Magy B et al (2016) Gene inactivation by CRISPR-Cas9 in Nicotiana tabacum BY-2 suspension cells. Front Plant Sci 7:40. https://doi.org/10.3389/fpls.2016.00040

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ren C, Liu X, Zhang Z et al (2016) CRISPR/Cas9-mediated efficient targeted mutagenesis in Chardonnay (Vitis vinifera L.). Sci Rep 6:32289. https://doi.org/10.1038/srep32289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jiang C, Mithani A, Gan X et al (2011) Regenerant arabidopsis lineages display a distinct genome-wide spectrum of mutations conferring variant phenotypes. Curr Biol. https://doi.org/10.1016/j.cub.2011.07.002

    Article  PubMed  PubMed Central  Google Scholar 

  22. Polanco C, Ruiz ML (2002) AFLP analysis of somaclonal variation in Arabidopsis thaliana regenerated plants. Plant Sci. https://doi.org/10.1016/s0168-9452(02)00029-8

    Article  Google Scholar 

  23. Sedov KA, Fomenkov AA, Solov’yova AI et al (2014) The level of genetic variability of cells in prolonged suspension culture of Arabidopsis thaliana. Biol Bull 41:493–499. https://doi.org/10.1134/S1062359014060107

    Article  CAS  Google Scholar 

  24. Michno J-M, Wang X, Liu J et al (2015) CRISPR/Cas mutagenesis of soybean and Medicago truncatula using a new web-tool and a modified Cas9 enzyme. GM Crops Food 6:243–252. https://doi.org/10.1080/21645698.2015.1106063

    Article  PubMed  PubMed Central  Google Scholar 

  25. Marenkova TV, Sidorchuk YV, Nosov AV et al (2019) The variation in gfp gene expression in Arabidopsis thaliana monoclonal cell lines. Biotekhnologiya 35 (in press)

  26. Ogawa Y, Dansako T, Yano K et al (2008) Efficient and high-throughput vector construction and Agrobacterium-mediated transformation of Arabidopsis thaliana suspension-cultured cells for functional genomics. Plant Cell Physiol 49:242–250. https://doi.org/10.1093/pcp/pcm181

    Article  CAS  PubMed  Google Scholar 

  27. Schenk RU, Hildebrandt AC (1972) Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant sell cultures. Can J Bot 50:199–204

    Article  CAS  Google Scholar 

  28. Allen GC, Flores-Vergara MA, Krasynanski S et al (2006) A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nat Protoc 1:2320–2325. https://doi.org/10.1038/nprot.2006.384

    Article  CAS  Google Scholar 

  29. Wu J-J, Liu Y-W, Sun M-X (2011) Improved and high throughput quantitative measurements of weak GFP expression in transgenic plant materials. Plant Cell Rep 30:1253–1260. https://doi.org/10.1007/s00299-011-1034-x

    Article  CAS  PubMed  Google Scholar 

  30. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  31. Schiml S, Puchta H (2016) Revolutionizing plant biology: multiple ways of genome engineering by CRISPR/Cas. Plant Methods 12:8. https://doi.org/10.1186/s13007-016-0103-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33:41–52. https://doi.org/10.1016/j.biotechadv.2014.12.006

    Article  CAS  PubMed  Google Scholar 

  33. Wang S, Zhang S, Wang W et al (2015) Efficient targeted mutagenesis in potato by the CRISPR/Cas9 system. Plant Cell Rep 34:1473–1476. https://doi.org/10.1007/s00299-015-1816-7

    Article  CAS  PubMed  Google Scholar 

  34. Butler NM, Atkins PA, Voytas DF, Douches DS (2015) Generation and inheritance of targeted mutations in potato (Solanum tuberosum L.) using the CRISPR/Cas system. PLoS ONE 10:1–12. https://doi.org/10.1371/journal.pone.0144591

    Article  CAS  Google Scholar 

  35. Zhang Y, Liang Z, Zong Y et al (2016) Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat Commun 7:1–8. https://doi.org/10.1038/ncomms12617

    Article  CAS  Google Scholar 

  36. Hahn F, Nekrasov V (2018) CRISPR/Cas precision: do we need to worry about off-targeting in plants? Plant Cell Rep 38:437–441. https://doi.org/10.1007/s00299-018-2355-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kumlehn J, Pietralla J, Hensel G et al (2018) The CRISPR/Cas revolution continues: from efficient gene editing for crop breeding to plant synthetic biology. J Integr Plant Biol 60:1127–1153. https://doi.org/10.1111/jipb.12734

    Article  CAS  PubMed  Google Scholar 

  38. Khatodia S, Bhatotia K, Passricha N et al (2016) The CRISPR/Cas genome-editing tool: application in improvement of crops. Front Plant Sci 7:1–13. https://doi.org/10.3389/fpls.2016.00506

    Article  Google Scholar 

  39. Schaeffer SM, Nakata PA (2016) The expanding footprint of CRISPR/Cas9 in the plant sciences. Plant Cell Rep. https://doi.org/10.1007/s00299-016-1987-x

    Article  PubMed  Google Scholar 

  40. Gilbert LA, Horlbeck MA, Adamson B et al (2014) Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159:647–661. https://doi.org/10.1016/j.cell.2014.09.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Didovyk A, Borek B, Tsimring L, Hasty J (2016) Transcriptional regulation with CRISPR-Cas9: principles, advances, and applications. Curr Opin Biotechnol 40:177–184. https://doi.org/10.1016/j.copbio.2016.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hahn F, Mantegazza O, Greiner A et al (2017) An efficient visual screen for CRISPR/Cas9 activity in Arabidopsis thaliana. Front Plant Sci 08:1–13. https://doi.org/10.3389/fpls.2017.00039

    Article  Google Scholar 

  43. Klimek-Chodacka M, Oleszkiewicz T, Lowder LG et al (2018) Efficient CRISPR/Cas9-based genome editing in carrot cells. Plant Cell Rep 37:575–586. https://doi.org/10.1007/s00299-018-2252-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work was supported by the Russian Science Foundation (Project No. 17-14-01099). The English language was corrected and certified by shevchuk-editing.com.

Author information

Authors and Affiliations

Authors

Contributions

NVP and EVD conceived and designed research. NVP, YuVS, TVM, SAK, VVK and AAZ conducted experiments. VVK contributed new reagents or analytical tools. NVP, YuVS and VVK analyzed data. NVP and SMR wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Natalya V. Permyakova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Permyakova, N.V., Sidorchuk, Y.V., Marenkova, T.V. et al. CRISPR/Cas9-mediated gfp gene inactivation in Arabidopsis suspension cells. Mol Biol Rep 46, 5735–5743 (2019). https://doi.org/10.1007/s11033-019-05007-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-019-05007-y

Keywords

Navigation