Skip to main content
Log in

PCR-based identification of point mutation mediating acetolactate synthase-inhibiting herbicide resistance in weed wild mustard (Sinapis arvensis)

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Acetolactate synthase (ALS)—inhibiting herbicides have been widely used for effective management and control of wild mustard (Sinapis arvensis) biotypes in Iran. The resistance of the ALS inhibitor to weeds is attributed to either target site alteration or enhanced herbicide degradation. Molecular and genetic characterization of the resistance mechanism is relevant to the evolution and management of herbicide resistance. The aims of this research were (a) to characterize the mechanism molecular suspected to Granstar (tribenuron methyl) and Atlantis (Mesosulfuron + Iodosulfuron) resistance in S. arvensis biotypes in the greenhouse and laboratory (b) to investigate the organization of the target-site loci in field selected S. arvensis populations and (c) instantly recognize the mutations that cause resistance to ALS inhibitors. Eighty resistant populations of S. arvensis were carefully collected from fields repeatedly treated with Granstar and Atlantis. The resistance level and pattern of the population were determined through a greenhouse dose–response experiment by applying the above-mentioned herbicides. Extraction of genomic DNA was carried out for PCR and ALS gene analysis. Our results showed that by greenhouse experiment across 80 biotypes suspected to resistance collected in the fields of whole Kermanshah Province, 30 biotypes (37.5%) conferred S. arvensis resistance species reported in the farm. Among 30 biotypes screened in a greenhouse experiment, six biotypes (20%), No. 9, 14, 17, 19, 23 and 28 revealed a mutation in the ALS gene that was detected by PCR-based method. Biotype No. 9 in the position 376 (Asp376-Gly, GAC to GGC), biotypes 14 and 19 in the position 197 (Pro197-Ala, CCT to GCT), biotypes 17, 23 and 28 in the position 574 (Trp574-Leu, TGG to TTG) and biotype No. 23 in the position 122 (Thr-122-Ala, ACA to GCA) showed herbicide resistance. The specific mutation in the position of 122 of the ALS gene in S. arvensis is the first report. Other biotypes showed resistance in the greenhouse but didn’t indicate any mutation by PCR-based method. Most of the resistance to Granstar and Atlantis are genetic and are induced by mutations in the ALS gene. The resistance to herbicides may contain a non-mutagenic and non-genetic origin. The reason of herbicide resistance as non-target-site in some of the biotypes may relate to the activity of the herbicide-metabolizing enzyme(s) or transporter proteins that will naturally lead to an increase in herbicide degradation or compartmentation away from its active site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Akbarabadi A, Ismaili A, Kahrizi D, Nazarian FF (2018) Validation of expression stability of reference genes in response to herbicide stress in wild oat (Avena ludoviciana). Cell Mol Biol 64(4):113–118

    Article  PubMed  Google Scholar 

  2. Kahrizi D, Salmanian AH, Afshari A, Moieni A, Mousavi A (2007) Simultaneous substitution of Gly96 to Ala and Ala183 to Thr in 5-enolpyruvylshikimate-3-phosphate synthase gene of E. coli (k12) and transformation of rapeseed (Brassica napus L.) in order to make tolerance to glyphosate. Plant Cell Rep 26(1):95–104. https://doi.org/10.1007/s00299-006-0208-4

    Article  CAS  PubMed  Google Scholar 

  3. Taravat E, Zebarjadi A, Kahrizi D, Yari K (2015) Isolation, cloning, and characterization of a partial novel aro A gene in common reed (Phragmites australis). Pharm Biol 53(5):637–641. https://doi.org/10.3109/13880209.2014.935867

    Article  CAS  PubMed  Google Scholar 

  4. Francis CA (2019) Integrated weed management for sustainable agriculture. Agroecol Sustain Food Syst 43(3):358–360

    Article  Google Scholar 

  5. Mallory-Smith CA, Thill DC, Dial MJ (1990) Identification of sulfonylurea herbicide-resistant prickly lettuce (Lactuca serriola). Weed Technol 4(1):163–168

    Article  Google Scholar 

  6. Primiani MM, Cotterman JC, Saari LL (1990) Resistance of kochia (Kochia scoparia) to sulfonylurea and imidazolinone herbicides. Weed Technol 4(1):169–172

    Article  CAS  Google Scholar 

  7. Devine M, Preston C (2000) The molecular basis of herbicide resistance. 72–104. Cobb, AH and RC kirkwood herbicides and their mechanisms of action Sheffield, England Sheffield Academic Press Google Scholar

  8. Jhala AJ, Sarangi D, Chahal P, Saxena A, Bagavathiannan M, Chauhan BS, Jha P (2017) Inter-specific gene flow from herbicide-tolerant crops to their wild relatives. In Biology, Physiology and Molecular Biology of Weeds. CRC Press, pp 87–122

  9. Tranel PJ, Wright TR (2002) Resistance of weeds to ALS-inhibiting herbicides: what have we learned? Weed Sci 50(6):700–712

    Article  CAS  Google Scholar 

  10. Spaunhorst DJ, Nie H, Todd JR, Young JM, Young BG, Johnson WG (2019) Confirmation of herbicide resistance mutations Trp574Leu, ΔG210, and EPSPS gene amplification and control of multiple herbicide-resistant Palmer amaranth (Amaranthus palmeri) with chlorimuron-ethyl, fomesafen, and glyphosate. PLoS ONE 14(3):e0214458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Saari L, Cotterman J, Smith W, Primiani M (1992) Sulfonylurea herbicide resistance in common chickweed, perennial ryegrass, and Russian thistle. Pestic Biochem Physiol 42(2):110–118

    Article  CAS  Google Scholar 

  12. Schmitzer PR, Eilers RJ, Cséke C (1993) Lack of cross-resistance of imazaquin-resistant Xanthium strumarium acetolactate synthase to flumetsulam and chlorimuron. Plant Physiol 103(1):281–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tehranchian P, Nandula VK, Matzrafi M, Jasieniuk M (2019) Multiple herbicide resistance in California Italian ryegrass (Lolium perenne ssp. multiflorum): characterization of ALS-inhibiting herbicide resistance. Weed Sci 67:1–8

    Article  Google Scholar 

  14. Deng W, Di Y, Cai J, Chen Y, Yuan S (2019) Target-site resistance mechanisms to tribenuron-methyl and cross-resistance patterns to ALS-inhibiting herbicides of catchweed bedstraw (Galium aparine) with different ALS mutations. Weed Sci 67(2):183–188

    Article  Google Scholar 

  15. McCourt JA, Pang SS, King-Scott J, Guddat LW, Duggleby RG (2006) Herbicide-binding sites revealed in the structure of plant acetohydroxyacid synthase. Proc Natl Acad Sci USA 103(3):569–573

    Article  CAS  PubMed  Google Scholar 

  16. Powles SB, Yu Q (2010) Evolution in action: plants resistant to herbicides. Ann Rev Plant Biol 61:317–347

    Article  CAS  Google Scholar 

  17. Shaner DL (1991) Mechanisms of resistance to acetolactate synthase/acetohydroxyacid synthase inhibitors. In: Proc-West Soc Weed Sci (USA)

  18. Torres-García JR, Tafoya-Razo JA, Velázquez-Márquez S, Tiessen A (2018) Double herbicide-resistant biotypes of wild oat (Avena fatua) display characteristic metabolic fingerprints before and after applying ACCase-and ALS-inhibitors. Acta Physiol Plant 40(6):119

    Article  Google Scholar 

  19. Warwick SI, Sauder CA, Beckie HJ (2010) Acetolactate synthase (ALS) target-site mutations in ALS inhibitor-resistant Russian thistle (Salsola tragus). Weed Sci 58(3):244–251

    Article  CAS  Google Scholar 

  20. Park K, Mallory-Smith C (2004) Physiological and molecular basis for ALS inhibitor resistance in Bromus tectorum biotypes. Weed Res 44(2):71–77

    Article  CAS  Google Scholar 

  21. Cruz-Hipolito H, Rosario J, Ioli G, Osuna MD, Smeda RJ, González-Torralva F, De Prado R (2013) Resistance mechanism to tribenuron-methyl in white mustard (Sinapis alba) from southern Spain. Weed Sci 61(3):341–347

    Article  CAS  Google Scholar 

  22. Heap I (2018) The international survey of herbicide resistant weeds. Online Internet Saturday, June 17, 2018 Available wwwweedscienceorg

  23. Darawi MN, Ai-Vyrn C, Ramasamy K, Hua PP, Pin TM, Kamaruzzaman SB, Majeed AB (2013) Allele-specific polymerase chain reaction for the detection of Alzheimer’s disease-related single nucleotide polymorphisms. BMC Med Genet 14:27. https://doi.org/10.1186/1471-2350-14-27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Akbarabadi A, Ismaili A, Kahrizi D, Firouzabadi FN (2018) Resistance determination of the ACCase-inhibiting herbicide of clodinafop propargyl in Avena ludoviciana (Durieu), and study of their interaction using molecular docking and simulation. Mol Biol Rep 46(1):415–424

    Article  PubMed  Google Scholar 

  25. Bahmani A, Naderi A, Zand E, Masumi M, Lack S (2015) Evaluation of selection intensity of acetolactate synthase-inhibitor herbicide resistance endowing Asp-376-Glu mutation in Sinapis arvensis biotype. In: Biological Forum, vol 2. Research Trend, p 901

  26. Corless BC, Chang GA, Cooper S, Syeda MM, Shao Y, Osman I, Karlin-Neumann G, Polsky D (2019) Development of novel mutation-specific droplet digital PCR assays detecting TERT promoter mutations in tumor and plasma samples. J Mol Diagn 21(2):274–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Alcaide M, Cheung M, Bushell K, Arthur SE, Wong H-L, Karasinska J, Renouf D, Schaeffer DF, McNamara S, du Tertre MC (2019) A novel multiplex droplet digital PCR Assay to identify and quantify KRAS mutations in clinical specimens. J Mol Diagn 21(2):214–227

    Article  CAS  PubMed  Google Scholar 

  28. Kim EK, Kim KA, Lee CY, Kim S, Chang S, Cho BC, Shim HS (2019) Molecular diagnostic assays and clinicopathologic implications of MET exon 14 skipping mutation in non–small-cell lung cancer. Clinical Lung Cancer 20(1):e123–e132

    Article  CAS  PubMed  Google Scholar 

  29. Chen G, Xu H, Zhang T, Bai C, Dong L (2018) Fenoxaprop-P-ethyl resistance conferred by cytochrome P450s and target site mutation in Alopecurus japonicus. Pest Manag Sci 74(7):1694–1703

    Article  CAS  PubMed  Google Scholar 

  30. Barrantes-Santamaría W, Castillo-Matamoros R, Herrera-Murillo F, Brenes-Angulo A, Gómez-Alpízar L (2018) Detection of the Trp-2027-Cys mutation in fluazifop-P-butyl–resistant itchgrass (Rottboellia cochinchinensis) using high-resolution melting analysis (HRMA). Weed Sci 66(3):286–292

    Article  Google Scholar 

  31. Takano HK, Mendes RR, Scoz LB, Ovejero RFL, Constantin J, Gaines TA, Westra P, Dayan FE, Oliveira RS (2019) Proline-106 EPSPS mutation imparting glyphosate resistance in goosegrass (Eleusine indica) Emerges in South America. Weed Sci 67(1):48–56

    Article  Google Scholar 

  32. Masoumi SM, Kahrizi D, Rostami-Ahmadvandi H, Soorni J, Kiani S, Mostafaie A, Yari K (2012) Genetic diversity study of some medicinal plant accessions belong to Apiaceae family based on seed storage proteins patterns. Mol Biol Rep 39(12):10361–10365

    Article  CAS  PubMed  Google Scholar 

  33. Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12(1):13–15

    Google Scholar 

  34. Abbott LB, Sterling TM (2006) African rue (Peganum harmala) seedling response to herbicides applied under water-deficit stress. Weed Sci 54(2):198–204

    Article  CAS  Google Scholar 

  35. Warwick SI, Sauder C, Beckie HJ (2005) Resistance in Canadian biotypes of wild mustard (Sinapis arvensis) to acetolactate synthase inhibiting herbicides. Weed Sci 53(5):631–639

    Article  CAS  Google Scholar 

  36. Christoffers MJ, Nandula VK, Howatt KA, Wehking TR (2006) Target-site resistance to acetolactate synthase inhibitors in wild mustard (Sinapis arvensis). Weed Sci 54(2):191–197

    Article  CAS  Google Scholar 

  37. Rosario J, Cruz-Hipolito H, Smeda R, De Prado R (2011) White mustard (Sinapis alba) resistance to ALS-inhibiting herbicides and alternative herbicides for control in Spain. Eur J Agron 35(2):57–62

    Article  CAS  Google Scholar 

  38. Retzinger EJ Jr, Mallory-Smith C (1997) Classification of herbicides by site of action for weed resistance management strategies. Weed Technol 11:384–393

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

RK: Execution research project, Data analysis, Manuscript preparation. FF: Experimental design, Data analysis, proofreading of the article. DK: Data analysis, Manuscript preparation. RT: Experimental design, Data analysis.

Corresponding author

Correspondence to Danial Kahrizi.

Ethics declarations

Conflict of interest

All authors declare that they does not have a conflict of interest.

Ethical approval

This study was approved by the Ethics Committee of Razi University, Kermanshah, Iran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khaledi, R., Fayaz, F., Kahrizi, D. et al. PCR-based identification of point mutation mediating acetolactate synthase-inhibiting herbicide resistance in weed wild mustard (Sinapis arvensis). Mol Biol Rep 46, 5113–5121 (2019). https://doi.org/10.1007/s11033-019-04967-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-019-04967-5

Keywords

Navigation