Skip to main content
Log in

High frequency electrical stimulation promotes expression of extracellular matrix proteins from human astrocytes

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Therapeutic benefits of deep brain stimulation (DBS), a neurosurgical treatment for certain movement disorders and other neurologic conditions, are well documented, but DBS mechanisms remain largely unexplained. DBS is thought to modulate pathological neural activity. However, although astrocytes, the most numerous cell type in the brain, play a significant role in neurotransmission, chemical homeostasis and synaptic plasticity, their role in DBS has not been fully examined. To investigate astrocytic function in DBS, we applied DBS-like high frequency electrical stimulation for 24 h to human astrocytes in vitro and analyzed single cell transcriptome mRNA profile. We found that DBS-like high frequency stimulation negatively impacts astrocyte metabolism and promotes the release of extracellular matrix (matricellular) proteins, including IGFBP3, GREM1, IGFBP5, THBS1, and PAPPA. Our results suggest that astrocytes are involved in the long-term modulation of extra cellular matrix environments and that they may influence persistent cell-to-cell interaction and help maintain neuromodulation over time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Benabid AL, Pollak P, Louveau A, Henry S, de Rougemont J (1987) Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson disease. Appl Neurophysiol 50(1–6):344–346

    CAS  PubMed  Google Scholar 

  2. Uc EY, Follett KA (2007) Deep brain stimulation in movement disorders. Semin Neurol 27(2):170–182

    Article  PubMed  Google Scholar 

  3. Shon YM, Lee KH, Goerss SJ, Kim IY, Kimble C, Van Gompel JJ, Bennet K, Blaha CD, Chang SY (2010) High frequency stimulation of the subthalamic nucleus evokes striatal dopamine release in a large animal model of human DBS neurosurgery. Neurosci Lett 475(3):136–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Johnson MD, Miocinovic S, McIntyre CC, Vitek JL (2008) Mechanisms and targets of deep brain stimulation in movement disorders. Neurotherapeutics 5(2):294–308

    Article  PubMed  PubMed Central  Google Scholar 

  5. McIntyre CC, Grill WM (1998) Sensitivity analysis of a model of mammalian neural membrane. Biol Cybern 79(1):29–37

    Article  CAS  PubMed  Google Scholar 

  6. Perea G, Araque A (2005) Glial calcium signaling and neuron-glia communication. Cell Calcium 38(3–4):375–382

    Article  CAS  PubMed  Google Scholar 

  7. Halassa MM, Haydon PG (2010) Integrated brain circuits: astrocytic networks modulate neuronal activity and behavior. Annu Rev Physiol 72:335–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bekar L, Libionka W, Tian GF, Xu Q, Torres A, Wang X, Lovatt D, Williams E, Takano T, Schnermann J et al (2008) Adenosine is crucial for deep brain stimulation-mediated attenuation of tremor. Nat Med 14(1):75–80

    Article  CAS  PubMed  Google Scholar 

  9. Takano T, Tian GF, Peng W, Lou N, Libionka W, Han X, Nedergaard M (2006) Astrocyte-mediated control of cerebral blood flow. Nat Neurosci 9(2):260–267

    Article  CAS  PubMed  Google Scholar 

  10. Tawfik VL, Chang SY, Hitti FL, Roberts DW, Leiter JC, Jovanovic S, Lee KH (2010) Deep brain stimulation results in local glutamate and adenosine release: investigation into the role of astrocytes. Neurosurgery 67(2):367–375

    Article  PubMed  PubMed Central  Google Scholar 

  11. Pascual O, Casper KB, Kubera C, Zhang J, Revilla-Sanchez R, Sul JY, Takano H, Moss SJ, McCarthy K, Haydon PG (2005) Astrocytic purinergic signaling coordinates synaptic networks. Science 310(5745):113–116

    Article  CAS  PubMed  Google Scholar 

  12. Jiang L, Zhang Q, Chang J, Qiu X, Wang E (2009) hsa-miR-125a-5p enhances invasion ability in non-small lung carcinoma cell lines. Zhongguo Fei Ai Za Zhi 12(9):951–955

    CAS  PubMed  Google Scholar 

  13. Barron M, Li J (2016) Identifying and removing the cell-cycle effect from single-cell RNA-sequencing data. Sci Rep 6:33892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bornstein P (2009) Matricellular proteins: an overview. J Cell Commun Signal 3(3–4):163–165

    Article  PubMed  PubMed Central  Google Scholar 

  15. Laursen LS, Overgaard MT, Soe R, Boldt HB, Sottrup-Jensen L, Giudice LC, Conover CA, Oxvig C (2001) Pregnancy-associated plasma protein-A (PAPP-A) cleaves insulin-like growth factor binding protein (IGFBP)-5 independent of IGF: implications for the mechanism of IGFBP-4 proteolysis by PAPP-A. FEBS Lett 504(1–2):36–40

    Article  CAS  PubMed  Google Scholar 

  16. Nam TJ, Busby WH, Rees C, Clemmons DR (2000) Thrombospondin and osteopontin bind to insulin-like growth factor (IGF)-binding protein-5 leading to an alteration in IGF-I-stimulated cell growth. Endocrinology 141(3):1100–1106

    Article  CAS  PubMed  Google Scholar 

  17. Brazil DP, Church RH, Surae S, Godson C, Martin F (2015) BMP signalling: agony and antagony in the family. Trends Cell Biol 25(5):249–264

    Article  CAS  PubMed  Google Scholar 

  18. Luo Q, Kang Q, Si WK, Jiang W, Park JK, Peng Y, Li XM, Luu HH, Luo J, Montag AG et al (2004) Connective tissue growth factor (CTGF) is regulated by Wnt and bone morphogenetic proteins signaling in osteoblast differentiation of mesenchymal stem cells. J Biol Chem 279(53):55958–55968

    Article  CAS  PubMed  Google Scholar 

  19. Abreu JG, Ketpura NI, Reversade B, De Robertis EM (2002) Connective-tissue growth factor (CTGF) modulates cell signalling by BMP and TGF-beta. Nat Cell Biol 4(8):599–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ito D, Walker JR, Thompson CS, Moroz I, Lin W, Veselits ML, Hakim AM, Fienberg AA, Thinakaran G (2004) Characterization of stanniocalcin 2, a novel target of the mammalian unfolded protein response with cytoprotective properties. Mol Cell Biol 24(21):9456–9469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang KZ, Lindsberg PJ, Tatlisumak T, Kaste M, Olsen HS, Andersson LC (2000) Stanniocalcin: a molecular guard of neurons during cerebral ischemia. Proc Natl Acad Sci USA 97(7):3637–3642

    Article  CAS  PubMed  Google Scholar 

  22. Basso M, Berlin J, Xia L, Sleiman SF, Ko B, Haskew-Layton R, Kim E, Antonyak MA, Cerione RA, Iismaa SE et al (2012) Transglutaminase inhibition protects against oxidative stress-induced neuronal death downstream of pathological ERK activation. J Neurosci 32(19):6561–6569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cho SY, Lee JH, Bae HD, Jeong EM, Jang GY, Kim CW, Shin DM, Jeon JH, Kim IG (2010) Transglutaminase 2 inhibits apoptosis induced by calcium-overload through down-regulation of Bax. Exp Mol Med 42(9):639–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Thelen MH, Simonides WS, van Hardeveld C (1997) Electrical stimulation of C2C12 myotubes induces contractions and represses thyroid-hormone-dependent transcription of the fast-type sarcoplasmic-reticulum Ca2+-ATPase gene. Biochem J 321(Pt 3):845–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jones EV, Bouvier DS (2014) Astrocyte-secreted matricellular proteins in CNS remodelling during development and disease. Neural Plast 2014:321209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Guan J, Bennet L, Gluckman PD, Gunn AJ (2003) Insulin-like growth factor-1 and post-ischemic brain injury. Prog Neurobiol 70(6):443–462

    Article  CAS  PubMed  Google Scholar 

  27. Sankar T, Chakravarty MM, Bescos A, Lara M, Obuchi T, Laxton AW, McAndrews MP, Tang-Wai DF, Workman CI, Smith GS et al (2015) Deep brain stimulation influences brain structure in Alzheimer’s disease. Brain Stimul 8(3):645–654

    Article  PubMed  Google Scholar 

  28. Byun JS, Lee JW, Kim SY, Kwon KJ, Sohn JH, Lee K, Oh D, Kim SS, Chun W, Lee HJ (2010) Neuroprotective effects of stanniocalcin 2 following kainic acid-induced hippocampal degeneration in ICR mice. Peptides 31(11):2094–2099

    Article  CAS  PubMed  Google Scholar 

  29. Verkhratsky A, Kettenmann H (1996) Calcium signalling in glial cells. Trends Neurosci 19(8):346–352

    Article  CAS  PubMed  Google Scholar 

  30. Cornell-Bell AH, Finkbeiner SM, Cooper MS, Smith SJ (1990) Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science 247(4941):470–473

    Article  CAS  PubMed  Google Scholar 

  31. Parpura V, Grubisic V, Verkhratsky A (2011) Ca(2 +) sources for the exocytotic release of glutamate from astrocytes. Biochim Biophys Acta 1813(5):984–991

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Penelope Duffy for her help in preparing this manuscript. This study was funded in part by the National Institutes of Health, National Institute of Neurological Disorders and Strokes (NS 88260). John M. Nasseff, Sr. Career Development Award was granted to SYC.

Author information

Authors and Affiliations

Authors

Contributions

SYC and JJ conceived and designed the experiments; JSJ and CIC designed and performed the experiments; JY performed experiment; KB performed primary cell culture; JSJ, CIC and AB analyzed the data; IK designed and built the stimulation chamber.

Corresponding author

Correspondence to Su-youne Chang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 95 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, J.S., Choi, CI., Yi, J. et al. High frequency electrical stimulation promotes expression of extracellular matrix proteins from human astrocytes. Mol Biol Rep 46, 4369–4375 (2019). https://doi.org/10.1007/s11033-019-04890-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-019-04890-9

Keywords

Navigation