Skip to main content
Log in

Molecular dynamics simulation as a tool for assessment of drug binding property of human serum albumin

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Human serum albumin (HSA) is a major plasma protein and binding of drugs with this plasma protein has a great importance. It possess esterase activity which can cleave the drugs containing ester bond and thus, can regulate the effect of drugs. Till date no systematic study has been done to analyse binding of such drugs and to compare the results with the drugs which do not have ester bond. Therefore, in the present study two different categories—ester and non-ester drugs have been considered to analyse their interaction with HSA at two principle drug binding sites using molecular modelling tools. It is observed that the drugs irrespective of ester or non-ester nature prefer either Sudlow site I or II by hydrogen bond and hydrophobic interactions. The information obtained from the study can assist to study pharmacokinetics of the drugs and that in turn will help in noval drug discoveries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

HSA:

Human serum albumin

MD:

Molecular dynamics

Rg:

Radius of gyration

RMSD:

Root mean square deviation

References

  1. Chen YC, Wang HM, Niu QX, Ye DY, Liang GW (2016) Binding between Saikosaponin C and human serum albumin by fluorescence spectroscopy and molecular docking. Molecules 21(2):153

    Article  Google Scholar 

  2. Lambrinidis G, Vallianatou T, Tsantili-Kakoulidou A (2015) In vitro, in silico and integrated strategies for the estimation of plasma protein binding. A review. Adv Drug Deliv Rev 86:27–45

    Article  CAS  Google Scholar 

  3. Sugio S, Kashima A, Mochizuki S, Noda M, Kobayashi K (1999) Crystal structure of human serum albumin at 2.5 Å resolution. Prot Eng 12(6):439–446

    Article  CAS  Google Scholar 

  4. Yang F, Bian C, Zhu L, Zhao G, Huang Z, Huang M (2007) Effect of human serum albumin on drug metabolism: structural evidence of esterase activity of human serum albumin. J Struct Biol 157(2):348–355

    Article  CAS  Google Scholar 

  5. Goncharov NV, Belinskaia DA, Shmurak VI, Terpilowski MA, Jenkins RO, Avdonin PV (2017) Serum albumin binding and esterase activity: mechanistic interactions with organophosphates. Molecules 22(7):1201

    Article  Google Scholar 

  6. Yamasaki K, Hyodo S, Taguchi K, Nishi K, Yamaotsu N, Hirono S, Otagiri M (2017) Long chain fatty acids alter the interactive binding of ligands to the two principal drug binding sites of human serum albumin. PLoS ONE 12(6):e0180404

    Article  Google Scholar 

  7. Russell BA, Mulheran PA, Birch DJS, Chen Y (2016) Probing the Sudlow binding site with warfarin: how does gold nanocluster growth alter human serum albumin? Phys Chem Chem Phys 18(33):22874–22878

    Article  CAS  Google Scholar 

  8. Petitpas I, Bhattacharya AA, Twine S, East M, Curry S (2001) Crystal structure analysis of warfarin binding to human serum albumin anatomy of drug site I. J Biol Chem 276(25):22804–22809

    Article  CAS  Google Scholar 

  9. Bhattacharya AA, Curry S, Franks NP (2000) Binding of the general anestheticspropofol and halothane to human serum albumin high resolution crystal structures. J Biol Chem 275(49):38731–38738

    Article  CAS  Google Scholar 

  10. Liu R, Meng Q, Xi J, Yang J, Ha CE, Bhagavan NV, Eckenhoff RG (2004) Comparative binding character of two general anaesthetics for sites on human serum albumin. Biochem J 380(Pt 1):147

    Article  CAS  Google Scholar 

  11. Evoli S, Mobley DL, Guzzi R, Rizzuti B (2016) Multiple binding modes of ibuprofen in human serum albumin identified by absolute binding free energy calculations. Phys Chem Chem Phys 18(47):32358–32368

    Article  CAS  Google Scholar 

  12. Yang F, Zhang Y, Liang H (2014) Interactive association of drugs binding to human serum albumin. Int J Mol Sci 15(3):3580–3595

    Article  CAS  Google Scholar 

  13. Ishtikhar M, Khan MV, Khan S, Chaturvedi SK, Badr G, Mahmoud MH, Khan RH (2016) Biophysical and molecular docking insight into interaction mechanism and thermal stability of human serum albumin isoforms with a semi-synthetic water-soluble camptothecinanalogirinotecan hydrochloride. J Biomol Struct Dyn 34(7):1545–1560

    Article  CAS  Google Scholar 

  14. Harm S, Schildböck C, Hartmann J (2018) Removal of stabilizers from human serum albumin by adsorbents and dialysis used in blood purification. PLoS ONE 13(1):e0191741

    Article  Google Scholar 

  15. Omidvar Z, Asoodeh A, Chamani J (2013) Studies on the antagonistic behavior between cyclophosphamide hydrochloride and aspirin with human serum albumin: time-resolved fluorescence spectroscopy and isothermal titration calorimetry. J Solut Chem 42(5):1005–1017

    Article  CAS  Google Scholar 

  16. Marouzi S, Rad AS, Beigoli S, Baghaee PT, Darban RA, Chamani J (2017) Study on effect of lomefloxacin on human holo-transferrin in the presence of essential and nonessential amino acids: spectroscopic and molecular modeling approaches. Int J Biol Macromol 97:688–699

    Article  CAS  Google Scholar 

  17. Rashidipour S, Naeeminejad S, Chamani J (2016) Study of the interaction between DNP and DIDS with human hemoglobin as binary and ternary systems: spectroscopic and molecular modeling investigation. J Biomol Struct Dyn 34(1):57–77

    Article  Google Scholar 

  18. Hamed-Akbari Tousi S, Reza Saberi M, Chamani J (2010) Comparing the interaction of cyclophosphamide monohydrate to human serum albumin as opposed to holo-transferrin by spectroscopic and molecular modeling methods: evidence for allocating the binding site. Prot Pept Lett 17(12):1524–1535

    Article  Google Scholar 

  19. Bozorgmehr MR, Chamani J, Moslehi G (2015) Spectroscopic and DFT investigation of interactions between cyclophosphamide and aspirin with lysozyme as binary and ternary systems. J Biomol Struct Dyn 33(8):1669–1681

    Article  CAS  Google Scholar 

  20. Alonso H, Bliznyuk AA, Gready JE (2006) Combining docking and molecular dynamic simulations in drug design. Med Res Rev 26(5):531–568

    Article  CAS  Google Scholar 

  21. Śledź P, Caflisch A (2018) Protein structure-based drug design: from docking to molecular dynamics. Curr Opin Struct Biol 48:93–102

    Article  Google Scholar 

  22. Narwal M, Kumar D, Maniar K, Bhattacharyya R, Banerjee D (2018) Albumin binding: an important parameter to study for drugs with low therapeutic index. J Transl Sci 4(3):1–2

    Google Scholar 

Download references

Acknowledgements

DK acknowledges Council of Scientific and Industrial Research, India for providing fellowship (File No: 09/141(0197)/2016-EMR-I).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rajasri Bhattacharyya or Dibyajyoti Banerjee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narwal, M., Kumar, D., Mukherjee, T.K. et al. Molecular dynamics simulation as a tool for assessment of drug binding property of human serum albumin. Mol Biol Rep 45, 1647–1652 (2018). https://doi.org/10.1007/s11033-018-4308-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-018-4308-3

Keywords

Navigation