Skip to main content
Log in

Modulation of physiological responses with TiO2 nano-particle in Azolla pinnata R.Br. under 2,4-D toxicity

  • Original article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The present work is emphasised with the herbicidal tolerance of Azolla pinnata R.Br. and its modulation with TiO2 nano-particle. Both carbohydrate and nitrogen metabolism were effected with 2,4-D as herbicide and in few cases TiO2-NP had recovered few detrimental effects. From the nutrient status in Azolla it recorded the recovery of nitrogen as well as potassium by TiO2-NP but not in case of phosphorus. However, a conversion of nitrate to ammonium was more induced by TiO2-NP under herbicidal toxicity. Similar results were obtained for inter-conversion of amino acid–nitrate pool, but no changes with glutamine synthase activity with TiO2-NP. Initially, the effects of 2,4-D was monitored with changes of chlorophyll content but had not been recovered with nanoparticle. Photosynthetic reserves expressed as both total and reducing sugar were insensitive to TiO2-NP interference but activity of soluble and wall bound invertase was in reverse trend as compared to control. The 2,4-D mediated changes of redox and its oxidative stress was ameliorated in plants with over expressed ADH activity. As a whole the Azolla bio system with TiO2 supplementation may be useful in sustenance against 2,4-D toxicity through recovery of nitrogen metabolism. Thus, Azolla-TiO2-NP bio system would be realised to monitor the herbicidal toxicity in soil and its possible bioremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

2,4-D:

2,4-Dichloro-phenoxy acetic acid

TiO2-NP:

Titanium di-oxide nanoparticle

ENP:

Engineered nanoparticle

ROS:

Reactive oxygen species

RH:

Relative humidity

RWC:

Relative water content

NAD(P)H:

Nicotinamide adenine dinucleotide phosphate (reduced)

DTT:

Dithiothreitol

BSA:

Bovine serum albumin

EDTA:

Ethylene diamine tetra acetic acid

References

  1. Klatyik S, Darvas B, Olah M, MÖRTL M, Takacs E, Szekacs A (2017) Pesticide residues in spice paprika and their effects on environmental and food safety. J Food Nutr Res 56(3):201–218

    CAS  Google Scholar 

  2. De AK, Dey N, Adak MK (2016) Biotechnological implication with Azolla pinnata R. Br. for metal quenching ability with physiological biomarkers. Cryptogam Biodivers Assess 1(1):28–36

    Google Scholar 

  3. Mandal C, Bera S, Dey N, Adak M (2016) Physiological alterations of Salvinia natans L. exposed to aluminium stress and its interaction with polyamine. Plant Sci Today 3(2):195–206

    Article  CAS  Google Scholar 

  4. Das K, Mandal C, Ghosh N, Dey N, Adak MK (2013) Cadmium accumulation in Marsilea minuta Linn. and its antioxidative responses. Am J Plant Sci 4(02):365

    Article  Google Scholar 

  5. Yang F, Liu C, Gao F, Su M, Wu X, Zheng L, Yang P (2007) The improvement of spinach growth by nano-anatase TiO2 treatment is related to nitrogen photoreduction. Biol Trace Elem Res 119(1):77–88

    Article  CAS  PubMed  Google Scholar 

  6. Kudsk P, Streibig JC (2003) Herbicides—a two-edged sword. Weed Res 43(2):90–102

    Article  CAS  Google Scholar 

  7. McCarthy-Suárez I (2017) Role of reactive oxygen species in auxin herbicide phytotoxicity: current information and hormonal implications—are gibberellins, cytokinins, and polyamines involved? Botany 95(4):369–385

    Article  Google Scholar 

  8. Olette R, Couderchet M, Biagianti S, Eullaffroy P (2008) Toxicity and removal of pesticides by selected aquatic plants. Chemosphere 70(8):1414–1421

    Article  CAS  PubMed  Google Scholar 

  9. De AK, Sarkar B, Adak MK (2017) Physiological explanation of herbicide tolerance in Azolla pinnata R.Br. Ann Agrar Sci. https://doi.org/10.1016/j.aasci.2017.05.021

    Article  Google Scholar 

  10. Yang F, Hong F, You W, Liu C, Gao F, Wu C, Yang P (2006) Influence of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biol Trace Elem Res 110(2):179–190

    Article  CAS  PubMed  Google Scholar 

  11. Adhikari T, Kundu S, Biswas AK, Tarafdar JC, Rao AS (2012) Effect of copper oxide nano particle on seed germination of selected crops. J Agric Sci Technol A 2(6A):815

    CAS  Google Scholar 

  12. Gouda S, Kerry RG, Das G, Paramithiotis S, Shin HS, Patra JK (2017) Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol Res 206:131–140

    Article  PubMed  Google Scholar 

  13. Gomes MP, de Brito JCM, Carneiro MMLC, Cunha MRRda, Garcia QS, Figueredo CC (2018) Responses of the nitrogen-fixing aquatic fern Azolla to water contaminated with ciprofloxacin: impacts on biofertilization. Environ Pollut 232:293–299

    Article  CAS  PubMed  Google Scholar 

  14. Singh A, Singh P, Singh P (1988) Effects of different herbicides on Azolla and blue-green algal biofertilization of rice. J Agric Sci 111(3):451–458. https://doi.org/10.1017/S0021859600083623

    Article  CAS  Google Scholar 

  15. De AK, Adak MK, Dey N (2016) Biotechnological implication with R. Br. for metal quenching Azolla innata p ability with physiological biomarkers. Compare 2(2):2

    Google Scholar 

  16. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  17. Othman R, Vladisavljević GT, Nagy ZK (2015) Preparation of biodegradable polymeric nanoparticles for pharmaceutical applications using glass capillary microfluidics. Chem Eng Sci 137:119–130

    Article  CAS  Google Scholar 

  18. Syed RA, Mohammad R, Ajaz A et al (2017) Potential health benefits and metabolomics of camelmilk by GC-MS and ICP-MS. Biol Trace Elem Res 175:322–330

    Article  Google Scholar 

  19. Ahamad SR, Raish M, Yaqoob SH et al (2016) Metabolomics and trace element analysis of camel tear by GC-MS and ICP-MS. Biol Trace Elem Res. https://doi.org/10.1007/s12011-016-0889-7

    Article  PubMed  Google Scholar 

  20. Wang W, Yang C, Tang X, Gu X, Zhu Q, Pan K, Ma D (2014) Effects of high ammonium level on biomass accumulation of common duckweed Lemna minor L. Environ Sci Pollut Res 21(24):14202–14210

    Article  CAS  Google Scholar 

  21. Weatherly MH (1965) U.S. Patent No. 3,198,932. U.S. Patent and Trademark Office, Washington, DC

    Google Scholar 

  22. Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta Bioenerg 975(3):384–394

    Article  CAS  Google Scholar 

  23. Bradford MM (1976) Rapid and sensitive method for quantization of micro gram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  24. Esposito S, Guerriero G, Vona V, Di Martino Rigano V, Carfagna S, Rigano C (2004) Glutamate synthase activities and protein changes in relation to nitrogen nutrition in barley: the dependence on different plastidic glucose-6P dehydrogenase isoforms. J Exp Bot 56(409):55–64

    PubMed  Google Scholar 

  25. Kwinta J, Cal K (2005) Effects of salinity stress on the activity of glutamine synthetase and glutamate dehydrogenase in triticale seedlings. Pol J Environ Stud 14(1):125–130

    CAS  Google Scholar 

  26. Carelli MLC, Fahl JI, Ramalho JDC (2006) Aspects of nitrogen metabolism in coffee plants. Braz J Plant Physiol 18(1):9–21

    Article  CAS  Google Scholar 

  27. Hedge JE, Hofreiter BT, Whistler RL (1962) Carbohydrate chemistry, vol 17. Academic Press, New York

    Google Scholar 

  28. Dubois M, Gilles KA, Hamilton JK, Rebers PT, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28(3):350–356

    Article  CAS  Google Scholar 

  29. Wexler M, Bond PL, Richardson DJ, Johnston AW (2005) A wide host-range metagenomic library from a waste water treatment plant yields a novel alcohol/aldehyde dehydrogenase. Environ Microbiol 7(12):1917–1926

    Article  CAS  PubMed  Google Scholar 

  30. Nelson N (1944) A photometric adaptation of the Somogyi method for the determination of glucose. J Biol Chem 153:375–380

    CAS  Google Scholar 

  31. Harvey RM, Fox JL (1973) Nutrient removal using Lemna minor. J Water Pollut Control Fed 45:1928–1938

    CAS  Google Scholar 

  32. Jeong DH, Erb U, Aust KT, Palumbo G (2003) The relationship between hardness and abrasive wear resistance of electrodeposited nanocrystalline Ni–P coatings. Scr Mater 48(8):1067–1072

    Article  CAS  Google Scholar 

  33. Gomez KA, Gomez AA (1984) Statistical procedures for agricultural research. Wiley, New York

    Google Scholar 

  34. Song G, Gao Y, Wu H, Hou W, Zhang C, Ma H (2012) Physiological effect of anatase TiO2 nanoparticles on Lemna minor. Environ Toxicol Chem 31(9):2147–2152

    Article  CAS  PubMed  Google Scholar 

  35. Padhye LP, Tezel U (2014) Fate of environmental pollutants. Water Environ Res 86(10):1714–1773

    Article  PubMed Central  Google Scholar 

  36. De AK, Sarkar B, Adak MK, Paul D, Sinha SN (2017) Physiological explanation of herbicide tolerance in Azolla pinnata R. Br. Ann Agrar Sci 15(3):402–409

    Article  Google Scholar 

  37. Bauwe H, Hagemann M, Fernie AR (2010) Photorespiration: players, partners and origin. Trends Plant Sci 15(6):330–336

    Article  CAS  PubMed  Google Scholar 

  38. Sakihama Y, Cohen MF, Grace SC, Yamasaki H (2002) Plant phenolic antioxidant and prooxidant activities: phenolics-induced oxidative damage mediated by metals in plants. Toxicology 177(1):67–80

    Article  CAS  PubMed  Google Scholar 

  39. Chen G, Liu X, Su C (2012) Distinct effects of humic acid on transport and retention of TiO2 rutile nanoparticles in saturated sand columns. Environ Sci Technol 46(13):7142–7150

    Article  CAS  PubMed  Google Scholar 

  40. Jiang C (2016) Effects of natural organic matter on the dissolution kinetics and bioavailability of metal oxide nanoparticles (Doctoral dissertation, Duke University)

  41. Kumar A, Pandey AK, Singh SS, Shanker R, Dhawan A (2011) Engineered ZnO and TiO2 nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli. Free Radic Biol Med 51(10):1872–1881

    Article  CAS  PubMed  Google Scholar 

  42. Briat JF, Ravet K, Arnaud N, Duc C, Boucherez J, Touraine B et al (2009) New insights into ferritin synthesis and function highlight a link between iron homeostasis and oxidative stress in plants. Ann Bot 105(5):811–822

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wenzel WW (2009) Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant Soil 321(1–2):385–408

    Article  CAS  Google Scholar 

  44. McKersie BD, Lesheim Y (2013) Stress and stress coping in cultivated plants. Springer Science & Business Media, Dordrecht

    Google Scholar 

  45. Sowa AW, Duff SM, Guy PA, Hill RD (1998) Altering hemoglobin levels changes energy status in maize cells under hypoxia. Proc Natl Acad Sci 95(17):10317–10321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is financially supported by DST-PURSE programme, Department of Science and Technology, Govt. of INDIA, New Delhi, of University of Kalyani. In addition, Personal Research Grant (PRG) of University of Kalyani is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malay Kumar Adak.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De, A.K., Ghosh, A., Debnath, S.C. et al. Modulation of physiological responses with TiO2 nano-particle in Azolla pinnata R.Br. under 2,4-D toxicity. Mol Biol Rep 45, 663–673 (2018). https://doi.org/10.1007/s11033-018-4203-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-018-4203-y

Keywords

Navigation