Skip to main content
Log in

Functional constituents of a local serotonergic system, intrinsic to the human coronary artery smooth muscle cells

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Human coronary artery smooth muscle cells (HCASMCs) play an important role in the pathogenesis of coronary atherosclerosis and coronary artery diseases (CAD). Serotonin is a mediator known to produce vascular smooth muscle cell mitogenesis and contribute to coronary atherosclerosis. We hypothesize that the HCASMC possesses certain functional constituents of the serotonergic system such as: tryptophan hydroxylase and serotonin transporter. Our aim was to examine the presence of functional tryptophan hydroxylase-1 (TPH1) and serotonin transporter (SERT) in HCASMCs. The mRNA transcripts by qPCR and protein expression by Western blot of TPH1 and SERT were examined. The specificity and accuracy of the primers were verified using DNA gel electrophoresis and sequencing of qPCR products. The functionality of SERT was examined using a fluorescence dye-based serotonin transporter assay. The enzymatic activity of TPH was evaluated using UPLC. The HCASMCs expressed both mRNA transcripts and protein of SERT and TPH. The qPCR showed a single melt curve peak for both transcripts and in sequence analysis the amplicons were aligned with the respective genes. SERT and TPH enzymatic activity was present in the HCASMCs. Taken together, both TPH and SERT are functionally expressed in HCASMCs. These findings are novel and represent an initial step in examining the clinical relevance of the serotonergic system in HCASMCs and its role in the pathogenesis of coronary atherosclerosis and CAD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Amireault P, Sibon D, Cote F (2013) Life without peripheral serotonin: insights from tryptophan hydroxylase 1 knockout mice reveal the existence of paracrine/autocrine serotonergic networks. ACS Chem Neurosci 4(1):64–71. doi:10.1021/cn300154j

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Allen GF, Land JM, Heales SJ (2009) A new perspective on the treatment of aromatic l-amino acid decarboxylase deficiency. Mol Genet Metab 97(1):6–14. doi:10.1016/j.ymgme.2009.01.010

    Article  CAS  PubMed  Google Scholar 

  3. Hadjiconstantinou M, Neff NH (2008) Enhancing aromatic l-amino acid decarboxylase activity: implications for L-DOPA treatment in Parkinson’s disease. CNS Neurosci Ther 14(4):340–351. doi:10.1111/j.1755-5949.2008.00058.x

    Article  CAS  PubMed  Google Scholar 

  4. Zhu MY, Juorio AV (1995) Aromatic l-amino acid decarboxylase: biological characterization and functional role. Gen Pharmacol 26(4):681–696

    Article  CAS  PubMed  Google Scholar 

  5. Nichols DE, Nichols CD (2008) Serotonin receptors. Chem Rev 108(5):1614–1641. doi:10.1021/cr078224o

    Article  CAS  PubMed  Google Scholar 

  6. Hung AS, Tsui TY, Lam JC, Wai MS, Chan WM, Yew DT (2011) Serotonin and its receptors in the human CNS with new findings—a mini review. Curr Med Chem 18(34):5281–5288

    Article  CAS  PubMed  Google Scholar 

  7. Fabbri C, Marsano A, Serretti A (2013) Genetics of serotonin receptors and depression: state of the art. Curr Drug Targets 14(5):531–548

    Article  CAS  PubMed  Google Scholar 

  8. Vitalis T, Ansorge MS, Dayer AG (2013) Serotonin homeostasis and serotonin receptors as actors of cortical construction: special attention to the 5-HT3A and 5-HT6 receptor subtypes. Front Cell Neurosci 7:93. doi:10.3389/fncel.2013.00093

    Article  PubMed Central  PubMed  Google Scholar 

  9. Horschitz S, Hummerich R, Schloss P (2001) Structure, function and regulation of the 5-hydroxytryptamine (serotonin) transporter. Biochem Soc Trans 29(Pt 6):728–732

    Article  CAS  PubMed  Google Scholar 

  10. Faries PL, Rohan DI, Takahara H, Wyers MC, Contreras MA, Quist WC, King GL, Logerfo FW (2001) Human vascular smooth muscle cells of diabetic origin exhibit increased proliferation, adhesion, and migration. J Vasc Surg 33(3):601–607. doi:10.1067/mva.2001.111806

    Article  CAS  PubMed  Google Scholar 

  11. Walther DJ, Bader M (2003) A unique central tryptophan hydroxylase isoform. Biochem Pharmacol 66(9):1673–1680

    Article  CAS  PubMed  Google Scholar 

  12. Kumer SC, Mockus SM, Rucker PJ, Vrana KE (1997) Amino-terminal analysis of tryptophan hydroxylase: protein kinase phosphorylation occurs at serine-58. J Neurochem 69(4):1738–1745

    Article  CAS  PubMed  Google Scholar 

  13. Jacobsen JP, Medvedev IO, Caron MG (2012) The 5-HT deficiency theory of depression: perspectives from a naturalistic 5-HT deficiency model, the tryptophan hydroxylase 2Arg439His knockin mouse. Philos Trans R Soc Lond B Biol Sci 367(1601):2444–2459. doi:10.1098/rstb.2012.0109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Popova NK, Kulikov AV (2010) Targeting tryptophan hydroxylase 2 in affective disorder. Expert Opin Ther Targets 14(11):1259–1271. doi:10.1517/14728222.2010.524208

    Article  CAS  PubMed  Google Scholar 

  15. Martinez A, Knappskog PM, Haavik J (2001) A structural approach into human tryptophan hydroxylase and its implications for the regulation of serotonin biosynthesis. Curr Med Chem 8(9):1077–1091

    Article  CAS  PubMed  Google Scholar 

  16. Yates M, Leake A, Candy JM, Fairbairn AF, McKeith IG, Ferrier IN (1990) 5HT2 receptor changes in major depression. Biol Psychiatry 27(5):489–496

    Article  CAS  PubMed  Google Scholar 

  17. Leysen JE, Schotte A (1992) Role and localization of serotonin-5HT2 receptors. Prog Histochem Cytochem 26(1–4):241–249

    Article  CAS  PubMed  Google Scholar 

  18. Noble MI, Drake-Holland AJ (1994) The role of serotonin 5HT2 receptor antagonism in the control of coronary artery disease. Q J Med 87(1):11–16

    CAS  PubMed  Google Scholar 

  19. Merahi N, Laguzzi R (1995) Cardiovascular effects of 5HT2 and 5HT3 receptor stimulation in the nucleus tractus solitarius of spontaneously hypertensive rats. Brain Res 669(1):130–134

    Article  CAS  PubMed  Google Scholar 

  20. Satomura K, Takase B, Hamabe A, Ashida K, Hosaka H, Ohsuzu F, Kurita A (2002) Sarpogrelate, a specific 5HT2-receptor antagonist, improves the coronary microcirculation in coronary artery disease. Clin Cardiol 25(1):28–32

    Article  PubMed  Google Scholar 

  21. Berger M, Gray JA, Roth BL (2009) The expanded biology of serotonin. Annu Rev Med 60:355–366. doi:10.1146/annurev.med.60.042307.110802

    Article  CAS  PubMed  Google Scholar 

  22. Watts SW (2009) The love of a lifetime: 5-HT in the cardiovascular system. Am J Physiol Regul Integr Comp Physiol 296(2):R252–R256. doi:10.1152/ajpregu.90676.2008

    Article  CAS  PubMed  Google Scholar 

  23. Nemecek GM, Coughlin SR, Handley DA, Moskowitz MA (1986) Stimulation of aortic smooth muscle cell mitogenesis by serotonin. Proc Natl Acad Sci U S A 83(3):674–678

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Bonnin A, Goeden N, Chen K, Wilson ML, King J, Shih JC, Blakely RD, Deneris ES, Levitt P (2011) A transient placental source of serotonin for the fetal forebrain. Nature 472(7343):347–350. doi:10.1038/nature09972

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Dempsie Y, MacLean MR (2008) Pulmonary hypertension: therapeutic targets within the serotonin system. Br J Pharmacol 155(4):455–462. doi:10.1038/bjp.2008.241

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Ren W, Watts SW, Fanburg BL (2011) Serotonin transporter interacts with the PDGFbeta receptor in PDGF-BB-induced signaling and mitogenesis in pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 300(3):L486–L497. doi:10.1152/ajplung.00237.2010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Liu Y, Wei L, Laskin DL, Fanburg BL (2011) Role of protein transamidation in serotonin-induced proliferation and migration of pulmonary artery smooth muscle cells. Am J Respir Cell Mol Biol 44(4):548–555. doi:10.1165/rcmb.2010-0078OC

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Watts SW (1996) Serotonin activates the mitogen-activated protein kinase pathway in vascular smooth muscle: use of the mitogen-activated protein kinase kinase inhibitor PD098059. J Pharmacol Exp Ther 279(3):1541–1550

    CAS  PubMed  Google Scholar 

  29. Rabinovitch M (2001) Linking a serotonin transporter polymorphism to vascular smooth muscle proliferation in patients with primary pulmonary hypertension. J Clin Invest 108(8):1109–1111. doi:10.1172/jci14205

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Przyklenk K, Frelinger AL 3rd, Linden MD, Whittaker P, Li Y, Barnard MR, Adams J, Morgan M, Al-Shamma H, Michelson AD (2010) Targeted inhibition of the serotonin 5HT2A receptor improves coronary patency in an in vivo model of recurrent thrombosis. J Thromb Haemost 8(2):331–340. doi:10.1111/j.1538-7836.2009.03693.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Ni W, Geddes TJ, Priestley JR, Szasz T, Kuhn DM, Watts SW (2008) The existence of a local 5-hydroxytryptaminergic system in peripheral arteries. Br J Pharmacol 154(3):663–674. doi:10.1038/bjp.2008.111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. The ENRICHD investigators (2000) Enhancing recovery in coronary heart disease patients (ENRICHD): study design and methods. Am Heart J 139(1 Pt 1):1–9

    Google Scholar 

  33. Berkman LF, Blumenthal J, Burg M, Carney RM, Catellier D, Cowan MJ, Czajkowski SM, DeBusk R, Hosking J, Jaffe A, Kaufmann PG, Mitchell P, Norman J, Powell LH, Raczynski JM, Schneiderman N (2003) Effects of treating depression and low perceived social support on clinical events after myocardial infarction: the enhancing recovery in coronary heart disease patients (ENRICHD) randomized trial. JAMA 289(23):3106–3116. doi:10.1001/jama.289.23.3106

    Article  PubMed  Google Scholar 

  34. Jiang W, O’Connor C, Silva SG, Kuchibhatla M, Cuffe MS, Callwood DD, Zakhary B, Henke E, Arias RM, Krishnan R (2008) Safety and efficacy of sertraline for depression in patients with CHF (SADHART-CHF): a randomized, double-blind, placebo-controlled trial of sertraline for major depression with congestive heart failure. Am Heart J 156(3):437–444. doi:10.1016/j.ahj.2008.05.003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Wozniak G, Toska A, Saridi M, Mouzas O (2011) Serotonin reuptake inhibitor antidepressants (SSRIs) against atherosclerosis. Med Sci Monit 17(9):Ra205–Ra214

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Belcher PR (2009) Serotonin-mediated thrombosis and selective serotonin re-uptake inhibition. Thromb Haemost 102(3):424–425. doi:10.1160/th09-07-0437

    CAS  PubMed  Google Scholar 

  37. Shikata C, Nemoto M, Ebisawa T, Nishiyama A, Takeda N (2011) Effect of sarpogrelate on cardiovascular disorders. Exp Clin Cardiol 16(3):75–76

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Somberg TC, Arora RR (2008) Depression and heart disease: therapeutic implications. Cardiology 111(2):75–81. doi:10.1159/000119692

    Article  CAS  PubMed  Google Scholar 

  39. Serebruany VL, Suckow RF, Cooper TB, O’Connor CM, Malinin AI, Krishnan KR, van Zyl LT, Lekht V, Glassman AH (2005) Relationship between release of platelet/endothelial biomarkers and plasma levels of sertraline and N-desmethylsertraline in acute coronary syndrome patients receiving SSRI treatment for depression. Am J Psychiatry 162(6):1165–1170. doi:10.1176/appi.ajp.162.6.1165

    Article  PubMed  Google Scholar 

  40. Kimmel SE, Schelleman H, Berlin JA, Oslin DW, Weinstein RB, Kinman JL, Sauer WH, Lewis JD (2011) The effect of selective serotonin re-uptake inhibitors on the risk of myocardial infarction in a cohort of patients with depression. Br J Clin Pharmacol 72(3):514–517. doi:10.1111/j.1365-2125.2011.04008.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Schlienger RG, Meier CR (2003) Effect of selective serotonin reuptake inhibitors on platelet activation: can they prevent acute myocardial infarction? Am J Cardiovasc Drugs 3(3):149–162

    Article  CAS  PubMed  Google Scholar 

  42. Le Melledo JM, Bailey D, Baker GB (2004) Selective serotonin reuptake inhibitors and myocardial infarction. Circulation 109(3):E19. doi:10.1161/01.cir.0000113707.06004.3b

    Article  PubMed  Google Scholar 

  43. Tsao CW, Lin YS, Chen CC, Bai CH, Wu SR (2006) Cytokines and serotonin transporter in patients with major depression. Prog Neuropsychopharmacol Biol Psychiatry 30(5):899–905. doi:10.1016/j.pnpbp.2006.01.029

    Article  CAS  PubMed  Google Scholar 

  44. Ramamoorthy S, Bauman AL, Moore KR, Han H, Yang-Feng T, Chang AS, Ganapathy V, Blakely RD (1993) Antidepressant- and cocaine-sensitive human serotonin transporter: molecular cloning, expression, and chromosomal localization. Proc Natl Acad Sci U S A 90(6):2542–2546

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408. doi:10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  46. Hasegawa H, Oguro K, Naito Y, Ichiyama A (1999) Iron dependence of tryptophan hydroxylase activity in RBL2H3 cells and its manipulation by chelators. Eur J Biochem/FEBS 261(3):734–739. doi:10.1046/j.1432-1327.1999.00316.x

    Article  CAS  Google Scholar 

  47. Muck-Seler D, Diksic M (1995) The acute effects of reserpine and NSD-1015 on the brain serotonin synthesis rate measured by an autoradiographic method. Neuropsychopharmacology:official publication of the American College of. Neuropsychopharmacology 12(3):251–262. doi:10.1016/0893-133X(94)00084-D

    Article  CAS  PubMed  Google Scholar 

  48. Glassman AH, Bigger JT, Gaffney M, Van Zyl LT (2007) Heart rate variability in acute coronary syndrome patients with major depression: influence of sertraline and mood improvement. Arch Gen Psychiatry 64(9):1025–1031. doi:10.1001/archpsyc.64.9.1025

    Article  PubMed  Google Scholar 

  49. Cushing DJ, Cohen ML (1992) Comparison of the serotonin receptors that mediate smooth muscle contraction in canine and porcine coronary artery. J Pharmacol Exp Ther 261(3):856–862

    CAS  PubMed  Google Scholar 

  50. Shimizu M, Hata K, Takaoka H, Kanazawa K, Shinke T, Matsumoto H, Watanabe S, Yoshikawa R, Masai H, Miyamoto Y, Akita H, Yokoyama M (2007) Sumatriptan provokes coronary artery spasm in patients with variant angina: possible involvement of serotonin 1B receptor. Int J Cardiol 114(2):188–194. doi:10.1016/j.ijcard.2006.01.026

    Article  PubMed  Google Scholar 

  51. Sharma SK, Del Rizzo DF, Zahradka P, Bhangu SK, Werner JP, Kumamoto H, Takeda N, Dhalla NS (2001) Sarpogrelate inhibits serotonin-induced proliferation of porcine coronary artery smooth muscle cells: implications for long-term graft patency. Ann Thorac Surg 71(6):1856–1864 discussion 1865

    Article  CAS  PubMed  Google Scholar 

  52. Ramonet D, Rodriguez M, Saura J, Lizcano JM, Romera M, Unzeta M, Finch C, Billett E, Mahy N (2003) Localization of monoamine oxidase A and B and semicarbazide-sensitive amine oxidase in human peripheral tissues. Inflammopharmacology 11(2):111–117. doi:10.1163/156856003765764272

    Article  CAS  PubMed  Google Scholar 

  53. Saura J, Nadal E, van den Berg B, Vila M, Bombi JA, Mahy N (1996) Localization of monoamine oxidases in human peripheral tissues. Life Sci 59(16):1341–1349

    Article  CAS  PubMed  Google Scholar 

  54. Saura J, Kettler R, Da Prada M, Richards JG (1992) Quantitative enzyme radioautography with 3H-Ro 41-1049 and 3H-Ro 19-6327 in vitro: localization and abundance of MAO-A and MAO-B in rat CNS, peripheral organs, and human brain. J Neurosci 12(5):1977–1999

    CAS  PubMed  Google Scholar 

  55. Ishida T, Hirata K, Sakoda T, Kawashima S, Akita H, Yokoyama M (1999) Identification of mRNA for 5-HT1 and 5-HT2 receptor subtypes in human coronary arteries. Cardiovasc Res 41(1):267–274

    Article  CAS  PubMed  Google Scholar 

  56. Ullmer C, Schmuck K, Kalkman HO, Lubbert H (1995) Expression of serotonin receptor mRNAs in blood vessels. FEBS Lett 370(3):215–221

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Chandra Boosani for his inputs and suggestions on DNA electrophoresis and gene sequencing methodology. The authors thank Dr. Amit N Pandya for the help in conducting UPLC. The authors also thank Dr. Richard Blakely of Vanderbilt University, who generously provided us the HEK-hSERT cells. This work was supported by research grants R01HL090580, R01HL104516 and R01HL112597 from the National Institutes of Health, USA to DK Agrawal. The content of this article is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Conflict of interest

The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devendra K. Agrawal.

Additional information

Kannan Baskar and Swastika Sur have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baskar, K., Sur, S., Selvaraj, V. et al. Functional constituents of a local serotonergic system, intrinsic to the human coronary artery smooth muscle cells. Mol Biol Rep 42, 1295–1307 (2015). https://doi.org/10.1007/s11033-015-3874-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-015-3874-x

Keywords

Navigation