Skip to main content
Log in

Toxic effects of polychlorinated biphenyls on cardiac development in zebrafish

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Polychlorinated biphenyls (PCBs) are ubiquitous environmental pollutants that may pose significant health-risks to various organisms including humans. Although the mixed PCB Aroclor 1254 is widespread in the environment, its potential toxic effect on heart development and the mechanism underlying its developmental toxicity have not been previously studied. Here, we used the zebrafish as a toxicogenomic model to examine the effects of Aroclor 1254 on heart development. We found that PCB exposure during zebrafish development induced heart abnormalities including pericardial edema and cardiac looping defects. Further malformations of the zebrafish embryo were observed and death of the larvae occurred in a time- and dose-dependent manner. Our mechanistic studies revealed that abnormalities in the arylhydrocarbon receptor, Wnt and retinoic acid signaling pathways may underlie the effects of PCBs on zebrafish heart development. Interestingly, co-administration of Aroclor 1254 and diethylaminobenzaldehyde, an inhibitor of retinaldehyde dehydrogenase, partially rescued the toxic effects of PCBs on zebrafish heart development. In conclusion, PCBs can induce developmental defects in the zebrafish heart, which may be mediated by abnormal RA signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dolk H, Loane M, Garne E (2011) Congenital heart defects in Europe: prevalence and perinatal mortality, 2000 to 2005. Circulation 123:841–849. doi:10.1161/CIRCULATIONAHA.110.958405

    Article  PubMed  Google Scholar 

  2. Bruneau BG (2008) The developmental genetics of congenital heart disease. Nature 451:943–948. doi:10.1038/nature06801

    Article  CAS  PubMed  Google Scholar 

  3. Mone SM, Gillman MW, Miller TL, Herman EH, Lipshultz SE (2004) Effects of environmental exposures on the cardiovascular system: prenatal period through adolescence. Pediatrics 113:1058–1069

    PubMed  Google Scholar 

  4. Pompa G, Caloni F, Fracchiolla ML (2003) Dioxin and PCB contamination of fish and shellfish: assessment of human exposure. Review of the international situation. Vet Res Commun 27(Suppl 1):159–167

    Article  PubMed  Google Scholar 

  5. Crinnion WJ (2011) Polychlorinated biphenyls: persistent pollutants with immunological, neurological, and endocrinological consequences. Altern Med Rev 16:5–13

    PubMed  Google Scholar 

  6. Guvenius DM, Aronsson A, Ekman-Ordeberg G, Bergman A, Noren K (2003) Human prenatal and postnatal exposure to polybrominated diphenyl ethers, polychlorinated biphenyls, polychlorobiphenylols, and pentachlorophenol. Environ Health Perspect 111:1235–1241

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Solomon GM, Weiss PM (2002) Chemical contaminants in breast milk: time trends and regional variability. Environ Health Perspect 110:A339–A347

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Shen H, Main KM, Virtanen HE, Damggard IN, Haavisto AM, Kaleva M, Boisen KA, Schmidt IM, Chellakooty M, Skakkebaek NE et al (2007) From mother to child: investigation of prenatal and postnatal exposure to persistent bioaccumulating toxicants using breast milk and placenta biomonitoring. Chemosphere 67:S256–S262

    Article  CAS  PubMed  Google Scholar 

  9. Rogan WJ, Gladen BC, McKinney JD, Carreras N, Hardy P, Thullen J, Tinglestad J, Tully M (1986) Neonatal effects of transplacental exposure to PCBs and DDE. J Pediatr 109:335–341

    Article  CAS  PubMed  Google Scholar 

  10. Taylor PR, Lawrence CE, Hwang HL, Paulson AS (1984) Polychlorinated biphenyls: influence on birthweight and gestation. Am J Public Health 74:1153–1154

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Wang YP, Hong Q, Qin DN, Kou CZ, Zhang CM, Guo M, Guo XR, Chi X, Tong ML (2012) Effects of embryonic exposure to polychlorinated biphenyls on zebrafish (Danio rerio) retinal development. J Appl Toxicol 32:186–193. doi:10.1002/jat.1650

    Article  PubMed  Google Scholar 

  12. Stainier DY (2001) Zebrafish genetics and vertebrate heart formation. Nat Rev Genet 2:39–48

    Article  CAS  PubMed  Google Scholar 

  13. Lam SH, Winata CL, Tong Y, Korzh S, Lim WS, Korzh V, Spitsbergen J, Mathavan S, Miller LD, Liu ET et al (2006) Transcriptome kinetics of arsenic-induced adaptive response in zebrafish liver. Physiol Genomics 27:351–361

    Article  CAS  PubMed  Google Scholar 

  14. Ung CY, Lam SH, Hlaing MM, Winata CL, Korzh S, Mathavan S, Gong Z (2010) Mercury-induced hepatotoxicity in zebrafish: in vivo mechanistic insights from transcriptome analysis, phenotype anchoring and targeted gene expression validation. BMC Genom 11:212. doi:10.1186/1471-2164-11-212

    Article  Google Scholar 

  15. Hill AJ, Teraoka H, Heideman W, Peterson RE (2005) Zebrafish as a model vertebrate for investigating chemical toxicity. Toxicol Sci 86:6–19

    Article  CAS  PubMed  Google Scholar 

  16. Jones HS, Panter GH, Hutchinson TH, Chipman JK (2010) Oxidative and conjugative xenobiotic metabolism in zebrafish larvae in vivo. Zebrafish 7:23–30. doi:10.1089/zeb.2009.0630

    Article  CAS  PubMed  Google Scholar 

  17. Teraoka H, Dong W, Hiraga T (2003) Zebrafish as a novel experimental model for developmental toxicology. Congenit Anom 43:123–132

    Article  CAS  Google Scholar 

  18. Gittenberger-de Groot AC, Bartelings MM, Deruiter MC, Poelmann RE (2005) Basics of cardiac development for the understanding of congenital heart malformations. Pediatr Res 57:169–176

    Article  PubMed  Google Scholar 

  19. Kwon C, Cordes KR, Srivastava D (2008) Wnt/beta-catenin signaling acts at multiple developmental stages to promote mammalian cardiogenesis. Cell Cycle 7:3815–3818

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Niessen K, Karsan A (2008) Notch signaling in cardiac development. Circ Res 102:1169–1181. doi:10.1161/CIRCRESAHA.108.174318

    Article  CAS  PubMed  Google Scholar 

  21. Keegan BR, Feldman JL, Begemann G, Ingham PW, Yelon D (2005) Retinoic acid signaling restricts the cardiac progenitor pool. Science 307:247–249

    Article  CAS  PubMed  Google Scholar 

  22. Westerfield M (1993) The Zebrafish Book: a guide for the laboratory use of Zebrafish (Danio rerio) [M].Edition 4. Eugene OR: Univ. of Oregon Press

  23. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203:253–310

    Article  CAS  PubMed  Google Scholar 

  24. Thisse C, Thisse B (2008) High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat Protoc 3:59–69. doi:10.1038/nprot.2007.514

    Article  CAS  PubMed  Google Scholar 

  25. Chen JN, Fishman MC (1996) Zebrafish tinman homolog demarcates the heart field and initiates myocardial differentiation. Development 122:3809–3816

    CAS  PubMed  Google Scholar 

  26. Yelon D, Horne SA, Stainier DY (1999) Restricted expression of cardiac myosin genes reveals regulated aspects of heart tube assembly in zebrafish. Dev Biol 214:23–37

    Article  CAS  PubMed  Google Scholar 

  27. Ohyama T, Mohamed OA, Taketo MM, Dufort D, Groves AK (2006) Wnt signals mediate a fate decision between otic placode and epidermis. Development 133:865–875

    Article  CAS  PubMed  Google Scholar 

  28. Park SS, Miller H, Klotz AV, Kloepper-Sams PJ, Stegeman JJ, Gelboin HV (1986) Monoclonal antibodies to liver microsomal cytochrome P-450E of the marine fish Stenotomus chrysops (scup): cross reactivity with 3-methylcholanthrene induced rat cytochrome P-450. Arch Biochem Biophys 249:339–350

    Article  CAS  PubMed  Google Scholar 

  29. Grimes AC, Erwin KN, Stadt HA, Hunter GL, Gefroh HA, Tsai HJ, Kirby ML (2008) PCB126 exposure disrupts zebrafish ventricular and branchial but not early neural crest development. Toxicol Sci 106:193–205

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Yutzey KE, Rhee JT, Bader D (1994) Expression of the atrial-specific myosin heavy chain AMHC1 and the establishment of anteroposterior polarity in the developing chicken heart. Development 120:871–883

    CAS  PubMed  Google Scholar 

  31. Rottbauer W, Wessels G, Dahme T, Just S, Trano N et al (2006) Cardiac myosin light chain-2: a novel essential component of thick-myofilament assembly and contractility of the heart. Circ Res 99:323–331

    Article  CAS  PubMed  Google Scholar 

  32. Ryckebusch L, Wang Z, Bertrand N, Lin SC, Chi X, Schwartz R, Zaffran S and Niederreither K (2008) Retinoic acid deficiency alters second heart field formation. Proceedings of the National Academy of Sciences of the United States of America 105: 2913–2918. doi:10.1073/pnas.0712344105

  33. Lescroart F, Meilhac SM (2012) Cell lineages, growth and repair of the mouse heart. Results Probl Cell Differ 55:263–289. doi:10.1007/978-3-642-30406-4_15

  34. Quaife NM, Watson O, Chico TJ (2012) Zebrafish: an emerging model of vascular development and remodelling. Curr Opin Pharmacol 12:608–614. doi:10.1016/j.coph.2012.06.009

    Article  CAS  PubMed  Google Scholar 

  35. Sisman T, Geyikoglu F, Atamanalp M (2007) Early life-stage toxicity in zebrafish (Danio rerio) following embryonal exposure to selected polychlorinated biphenyls. Toxicol Ind Health 23:529–536

    Article  CAS  PubMed  Google Scholar 

  36. Rochais F, Mesbah K, Kelly RG (2009) Signaling pathways controlling second heart field development. Circ Res 104:933–942

    Article  CAS  PubMed  Google Scholar 

  37. Puga A (2011) Perspectives on the potential involvement of the AH receptor-dioxin axis in cardiovascular disease. Toxicol Sci 120:256–261. doi:10.1093/toxsci/kfq393

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Willert K, Nusse R (2012) Wnt proteins. Cold Spring Harb Perspect Biol 4:a007864. doi:10.1101/cshperspect.a007864

    Article  PubMed Central  PubMed  Google Scholar 

  39. Mohamed OA, Clarke HJ, Dufort D (2004) Beta-catenin signaling marks the prospective site of primitive streak formation in the mouse embryo. Dev Dyn 231:416–424

    Article  CAS  PubMed  Google Scholar 

  40. Schneider VA, Mercola M (2001) Wnt antagonism initiates cardiogenesis in Xenopus laevis. Genes Dev 15:304–315

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Panakova D, Werdich AA, Macrae CA (2010) Wnt11 patterns a myocardial electrical gradient through regulation of the L-type Ca(2+) channel. Nature 466:874–878. doi:10.1038/nature09249

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Eisenberg CA, Eisenberg LM (1999) WNT11 promotes cardiac tissue formation of early mesoderm. Dev Dyn 216:45–58

    Article  CAS  PubMed  Google Scholar 

  43. Safe SH (1994) Polychlorinated biphenyls (PCBs): environmental impact, biochemical and toxic responses, and implications for risk assessment. Crit Rev Toxicol 24:87–149

    Article  CAS  PubMed  Google Scholar 

  44. Denison MS, Nagy SR (2003) Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. Annu Rev Pharmacol Toxicol 43:309–334

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (Grant No. 30973213), the Key Medical Personnel Foundation of Jiangsu Province (Grant No. RC2011021), Nanjing Medical Science and Technique Development Foundation, and the Science and Technology Development Foundation of Nanjing Medical University (Grant No. 2011NJMU209).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuping Han.

Additional information

M. Li and X. Wang have contributed equally to this study and they should be regarded as joint first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Wang, X., Zhu, J. et al. Toxic effects of polychlorinated biphenyls on cardiac development in zebrafish. Mol Biol Rep 41, 7973–7983 (2014). https://doi.org/10.1007/s11033-014-3692-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3692-6

Keywords

Navigation