Skip to main content
Log in

Transcriptional regulation analysis and the potential transcription regulator site in the extended KAP6.1 promoter in sheep

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The high glycine/tyrosine type II keratin protein 6.1 (KAP6.1) is a member of the keratin-associated protein family, which is restricted to cells in hair follicles and is associated with fiber diameter and fiber curvature in Merino sheep. In this study, we obtained a series of progressive 5′-deletion fragments of the KAP6.1 gene promoter from ovine genomic DNA. The KAP6.1 5′-upstream region was fused to luciferase and transfected into sheep fetal fibroblast cells (sFFCs). We demonstrated that the sequence from −1,523 to −1 bp (taking the A of the initiator methionine ATG as the +1 nt position) gave rise to a higher luciferase activity comparing to the published region from −1,042 to −1 bp. Whereas, decreased transcriptional activity of the KAP6.1 promoter was observed when the sequence extended to −3,699 bp. To identify the DNA elements that are important for transcriptional activity, we performed structural analysis and electrophoretic mobility shift assay (EMSA). Structural analysis of the KAP6.1 promoter showed that transcription factors NF-kappa-B, AP-1, and C/EBP-alpha synergistically activate KAP6.1 promoter, while POU2F1 might function as a strong negative regulator. The EMSA showed that NF-kappa-B element bound to the nuclear protein extracted from sFFCs. We conclude that NF-kappa-B binding site is an enhancer element of KAP6.1 promoter in vitro. The results are potentially useful for elucidating the regulator mechanisms of KAP6.1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. McLaren RJ et al (1997) Linkage mapping of wool keratin and keratin-associated protein genes in sheep. Mamm Genome 8(12):938–940

    Article  CAS  PubMed  Google Scholar 

  2. Powell BC, Rogers GE (1997) The role of keratin proteins and their genes in the growth, structure and properties of hair. EXS 78:59–148

    CAS  PubMed  Google Scholar 

  3. Rogers MA, Schweizer J (2005) Human KAP genes, only the half of it? Extensive size polymorphisms in hair keratin-associated protein genes. J Invest Dermatol 124:vii–ix

    Article  CAS  PubMed  Google Scholar 

  4. Cai RL (1998) Human CART1, a paired-class homeodomain protein, activates transcription through palindromic binding sites. Biochem Biophys Res Commun 250(2):305–311

    Article  CAS  PubMed  Google Scholar 

  5. Powell BC, Nesci A, Rogers GE (1991) Regulation of keratin gene expression in hair follicle differentiation. Ann N Y Acad Sci 642:1–20

    Article  CAS  PubMed  Google Scholar 

  6. Plowman JE, Paton LN, Bryson WG (2007) The differential expression of proteins in the cortical cells of wool and hair fibres. Exp Dermatol 16(9):707–714

    Article  CAS  PubMed  Google Scholar 

  7. Parsons YM, Cooper DW, Piper LR (1994) Evidence of linkage between high-glycine-tyrosine keratin gene loci and wool fibre diameter in a Merino half-sib family. Anim Genet 25(2):105–108

    Article  CAS  PubMed  Google Scholar 

  8. Fratini A, Powell BC, Rogers GE (1993) Sequence, expression, and evolutionary conservation of a gene encoding a glycine/tyrosine-rich keratin-associated protein of hair. J Biol Chem 268(6):4511–4518

    CAS  PubMed  Google Scholar 

  9. Adelson DL et al (2004) Gene expression in sheep skin and wool (hair). Genomics 83(1):95–105

    Article  CAS  PubMed  Google Scholar 

  10. Plowman J E, B.W.G (2006) Wool keratins - the challenge ahead. Proceedings of the New Zealand Society of Animal Production 66

  11. Dunn SM et al (1998) Regulation of a hair follicle keratin intermediate filament gene promoter. J Cell Sci 111(Pt 23):3487–3496

    CAS  PubMed  Google Scholar 

  12. Rossi A et al (1998) Effect of AP1 transcription factors on the regulation of transcription in normal human epidermal keratinocytes. J Invest Dermatol 110(1):34–40

    Article  CAS  PubMed  Google Scholar 

  13. Maytin EV et al (1999) Keratin 10 gene expression during differentiation of mouse epidermis requires transcription factors C/EBP and AP-2. Dev Biol 216(1):164–181

    Article  CAS  PubMed  Google Scholar 

  14. Chen TT et al (1997) Regulation of K3 keratin gene transcription by Sp1 and AP-2 in differentiating rabbit corneal epithelial cells. Mol Cell Biol 17(6):3056–3064

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Sugihara TM et al (2001) The POU domain factor Skin-1a represses the keratin 14 promoter independent of DNA binding. A possible role for interactions between Skn-1a and CREB-binding protein/p300. J Biol Chem 276(35):33036–33044

    Article  CAS  PubMed  Google Scholar 

  16. Andersen B et al (1997) Functions of the POU domain genes Skn-1a/i and Tst-1/Oct-6/SCIP in epidermal differentiation. Genes Dev 11(14):1873–1884

    Article  CAS  PubMed  Google Scholar 

  17. Radoja N et al (2004) Thyroid hormones and gamma interferon specifically increase K15 keratin gene transcription. Mol Cell Biol 24(8):3168–3179

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Komine M et al (2001) Interleukin-1 induces transcription of keratin K6 in human epidermal keratinocytes. J Invest Dermatol 116(2):330–338

    Article  CAS  PubMed  Google Scholar 

  19. Komine M et al (2000) Inflammatory versus proliferative processes in epidermis. Tumor necrosis factor alpha induces K6b keratin synthesis through a transcriptional complex containing NFkappa B and C/EBPbeta. J Biol Chem 275(41):32077–32088

    Article  CAS  PubMed  Google Scholar 

  20. Ma S et al (1997) Transcriptional control of K5, K6, K14, and K17 keratin genes by AP-1 and NF-kappaB family members. Gene Expr 6(6):361–370

    CAS  PubMed  Google Scholar 

  21. Radoja N et al (2000) Novel mechanism of steroid action in skin through glucocorticoid receptor monomers. Mol Cell Biol 20(12):4328–4339

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Dubchak I, Ryaboy DV (2006) VISTA family of computational tools for comparative analysis of DNA sequences and whole genomes. Methods Mol Biol 338:69–89

    CAS  PubMed  Google Scholar 

  23. Brudno M et al (2003) LAGAN and Multi-LAGAN: efficient tools for large-scale multiple alignment of genomic DNA. Genome Res 13(4):721–731

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Liu LR et al (2005) T to C substitution at -175 or -173 of the gamma-globin promoter affects GATA-1 and Oct-1 binding in vitro differently but can independently reproduce the hereditary persistence of fetal hemoglobin phenotype in transgenic mice. J Biol Chem 280(9):7452–7459

    Article  CAS  PubMed  Google Scholar 

  25. Liu Y et al (2004) Eukaryotic regulatory element conservation analysis and identification using comparative genomics. Genome Res 14(3):451–458

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Jiang CK et al (1993) Epidermal growth factor and transforming growth factor alpha specifically induce the activation- and hyperproliferation-associated keratins 6 and 16. Proc Natl Acad Sci USA 90(14):6786–6790

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Gordon DF et al (1996) Human Cart-1: structural organization, chromosomal localization, and functional analysis of a cartilage-specific homeodomain cDNA. DNA Cell Biol 15(7):531–541

    Article  CAS  PubMed  Google Scholar 

  28. Cai RL (1998) Human CART1, a paired-class homeodomain protein, activates transcription through palindromic binding sites. Biochem Biophys Res Commun 250(2):305–311

    Article  CAS  PubMed  Google Scholar 

  29. Holmqvist E et al (2010) Two antisense RNAs target the transcriptional regulator CsgD to inhibit curli synthesis. EMBO J 29(11):1840–1850

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Zhang F, Hinnebusch AG (2011) An upstream ORF with non-AUG start codon is translated in vivo but dispensable for translational control of GCN4 mRNA. Nucleic Acids Res 39(8):3128–3140

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Major Project for Cultivation Technology of New Varieties of Genetically Modified Organisms of the Ministry of Agriculture (2013ZX08008-001, 2011ZX08008-001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuemei Deng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Cui, K., Zhang, Y. et al. Transcriptional regulation analysis and the potential transcription regulator site in the extended KAP6.1 promoter in sheep. Mol Biol Rep 41, 6089–6096 (2014). https://doi.org/10.1007/s11033-014-3485-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3485-y

Keywords

Navigation