Skip to main content
Log in

Decreased miR-30b-5p expression by DNMT1 methylation regulation involved in gastric cancer metastasis

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

miRNAs have emerged as crucial regulators in the regulation of development as well as human diseases, especially tumorigenesis. The aims of this study are to evaluate miR-30b-5p expression pattern and mechanism in gastric carcinogenesis due to which remains to be determined. Expression of miR-30b-5p was analyzed in 51 gastric cancer cases and 4 cell lines by qRT-PCR. The effect of DNA methylation on miR-30b-5p expression was assessed by MSP and BGS. In order to know whether DNMT1 increased miR-30b-5p promoter methylation, DNMT1 was depleted in cell lines AGS and BGC-823. The role of miR-30b-5p on cell migration was evaluated by wound healing assays. Decreased expression of miR-30b-5p was found in gastric cancer samples. In tumor, the expression level of miR-30b-5p was profound correlated with lymph node metastasis (P = 0.019). The level of miR-30b-5p may be restored by DNA demethylation and DNMT1 induced miR-30b-5p promoter methylation. In vitro functional assays implied that enforced miR-30b-5p expression affected cell migration, consistent with tissues analysis. Our findings uncovered that miR-30b-5p is significantly diminished in gastric cancer tissues, providing the first insight into the epigenetic mechanism of miR-30b-5p down-regulation, induced by DNMT1, and the role of miR-30b-5p in gastric cancer carcinogenesis. Overexpression of miR-30b-5p inhibited cell migration. Thus, miR-30b-5p may represent a potential therapeutic target for gastric cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

qRT-PCR:

Quantitative reverse-transcription polymerase chain reaction

DNMT1:

DNA methyltransferase 1

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61(2):69–90. doi:10.3322/caac.20107

    Article  PubMed  Google Scholar 

  2. Ghafoor A, Jemal A, Cokkinides V, Cardinez C, Murray T, Samuels A, Thun MJ (2002) Cancer statistics for African Americans. CA Cancer J Clin 52(6):326–341

    Article  PubMed  Google Scholar 

  3. Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136(4):642–655. doi:10.1016/j.cell.2009.01.035

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19(1):92–105. doi:10.1101/gr.082701.108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Quintavalle C, Donnarumma E, Iaboni M, Roscigno G, Garofalo M, Romano G, Fiore D, De Marinis P, Croce CM, Condorelli G (2012) Effect of miR-21 and miR-30b/c on TRAIL-induced apoptosis in glioma cells. Oncogene. doi:10.1038/onc.2012.410

    PubMed Central  Google Scholar 

  6. Huang YH, Lin KH, Chen HC, Chang ML, Hsu CW, Lai MW, Chen TC, Lee WC, Tseng YH, Yeh CT (2012) Identification of postoperative prognostic microRNA predictors in hepatocellular carcinoma. PLoS ONE 7(5):e37188. doi:10.1371/journal.pone.0037188

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Fischer L, Hummel M, Korfel A, Lenze D, Joehrens K, Thiel E (2011) Differential micro-RNA expression in primary CNS and nodal diffuse large B-cell lymphomas. Neuro-oncology 13(10):1090–1098. doi:10.1093/neuonc/nor107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Van der Auwera I, Limame R, van Dam P, Vermeulen PB, Dirix LY, Van Laere SJ (2010) Integrated miRNA and mRNA expression profiling of the inflammatory breast cancer subtype. Br J Cancer 103(4):532–541. doi:10.1038/sj.bjc.6605787

    Article  PubMed Central  PubMed  Google Scholar 

  9. Husted S, Sokilde R, Rask L, Cirera S, Busk PK, Eriksen J, Litman T (2011) MicroRNA expression profiles associated with development of drug resistance in Ehrlich ascites tumor cells. Mol Pharm 8(6):2055–2062. doi:10.1021/mp200255d

    Article  CAS  PubMed  Google Scholar 

  10. Rahbari R, Holloway AK, He M, Khanafshar E, Clark OH, Kebebew E (2011) Identification of differentially expressed microRNA in parathyroid tumors. Ann Surg Oncol 18(4):1158–1165. doi:10.1245/s10434-010-1359-7

    Article  PubMed Central  PubMed  Google Scholar 

  11. Yabushita S, Fukamachi K, Tanaka H, Sumida K, Deguchi Y, Sukata T, Kawamura S, Uwagawa S, Suzui M, Tsuda H (2012) Circulating microRNAs in serum of human K-ras oncogene transgenic rats with pancreatic ductal adenocarcinomas. Pancreas 41(7):1013–1018. doi:10.1097/MPA.0b013e31824ac3a5

    Article  CAS  PubMed  Google Scholar 

  12. Tao Q, Huang H, Geiman TM, Lim CY, Fu L, Qiu GH, Robertson KD (2002) Defective de novo methylation of viral and cellular DNA sequences in ICF syndrome cells. Hum Mol Genet 11(18):2091–2102

    Article  CAS  PubMed  Google Scholar 

  13. Fan H, Xu J, Wu S, Zhao Z, Zhang J, Xie W (2005) Construction of DNMT1 siRNA stable expressing vector and evaluation of its silenced efficiency in blocking gene expression (Zhonghua yi xue yi chuan xue za zhi = Zhonghua yixue yichuanxue zazhi). Chin J Med Genet 22 (2):142–145

  14. Corcoran DL, Pandit KV, Gordon B, Bhattacharjee A, Kaminski N, Benos PV (2009) Features of mammalian microRNA promoters emerge from polymerase II chromatin immunoprecipitation data. PLoS ONE 4(4):e5279. doi:10.1371/journal.pone.0005279

    Article  PubMed Central  PubMed  Google Scholar 

  15. Christman JK (2002) 5-Azacytidine and 5-aza-2′-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene 21(35):5483–5495. doi:10.1038/sj.onc.1205699

    Article  CAS  PubMed  Google Scholar 

  16. Ghoshal K, Datta J, Majumder S, Bai S, Kutay H, Motiwala T, Jacob ST (2005) 5-Aza-deoxycytidine induces selective degradation of DNA methyltransferase 1 by a proteasomal pathway that requires the KEN box, bromo-adjacent homology domain, and nuclear localization signal. Mol Cell Biol 25(11):4727–4741. doi:10.1128/mcb.25.11.4727-4741.2005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Inoue T, Iinuma H, Ogawa E, Inaba T, Fukushima R (2012) Clinicopathological and prognostic significance of microRNA-107 and its relationship to DICER1 mRNA expression in gastric cancer. Oncol Rep 27(6):1759–1764. doi:10.3892/or.2012.1709

    PubMed  Google Scholar 

  18. Barker HE, Chang J, Cox TR, Lang G, Bird D, Nicolau M, Evans HR, Gartland A, Erler JT (2011) LOXL2-mediated matrix remodeling in metastasis and mammary gland involution. Cancer Res 71(5):1561–1572. doi:10.1158/0008-5472.can-10-2868

    Article  CAS  PubMed  Google Scholar 

  19. Zhang J, Zhang H, Liu J, Tu X, Zang Y, Zhu J, Chen J, Dong L (2012) miR-30 inhibits TGF-beta1-induced epithelial-to-mesenchymal transition in hepatocyte by targeting Snail1. Biochem Biophys Res Commun 417(3):1100–1105. doi:10.1016/j.bbrc.2011.12.121

    Article  CAS  PubMed  Google Scholar 

  20. Gaziel-Sovran A, Segura MF, Di Micco R, Collins MK, Hanniford D, Vega-Saenz de Miera E, Rakus JF, Dankert JF, Shang S, Kerbel RS, Bhardwaj N, Shao Y, Darvishian F, Zavadil J, Erlebacher A, Mahal LK, Osman I, Hernando E (2011) miR-30b/30d regulation of GalNAc transferases enhances invasion and immunosuppression during metastasis. Cancer Cell 20(1):104–118. doi:10.1016/j.ccr.2011.05.027

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Wu T, Li Y, Liu X, Lu J, He X, Wang Q, Li J, Du X (2011) Identification of high-risk stage II and stage III colorectal cancer by analysis of MMP-21 expression. J Surg Oncol 104(7):787–791. doi:10.1002/jso.21970

    Article  CAS  PubMed  Google Scholar 

  22. Huang Y, Li W, Chu D, Zheng J, Ji G, Li M, Zhang H, Wang W, Du J, Li J (2011) Overexpression of matrix metalloproteinase-21 is associated with poor overall survival of patients with colorectal cancer. J Gastrointest Surg 15(7):1188–1194. doi:10.1007/s11605-011-1519-5

    Article  PubMed  Google Scholar 

  23. Zhang Z, Li Z, Gao C, Chen P, Chen J, Liu W, Xiao S, Lu H (2008) miR-21 plays a pivotal role in gastric cancer pathogenesis and progression. Lab Invest 88(12):1358–1366. doi:10.1038/labinvest.2008.94

    Article  CAS  PubMed  Google Scholar 

  24. Mani M, Carrasco DE, Zhang Y, Takada K, Gatt ME, Dutta-Simmons J, Ikeda H, Diaz-Griffero F, Pena-Cruz V, Bertagnolli M, Myeroff LL, Markowitz SD, Anderson KC, Carrasco DR (2009) BCL9 promotes tumor progression by conferring enhanced proliferative, metastatic, and angiogenic properties to cancer cells. Cancer Res 69(19):7577–7586. doi:10.1158/0008-5472.can-09-0773

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Rehman AO, Wang CY (2009) CXCL12/SDF-1 alpha activates NF-kappaB and promotes oral cancer invasion through the Carma3/Bcl10/Malt1 complex. Int J Oral Sci 1(3):105–118. doi:10.4248/ijos.09059

    Article  PubMed Central  PubMed  Google Scholar 

  26. Baylin SB, Ohm JE (2006) Epigenetic gene silencing in cancer - a mechanism for early oncogenic pathway addiction? Nat Rev Cancer 6(2):107–116. doi:10.1038/nrc1799

    Article  CAS  PubMed  Google Scholar 

  27. Smith LT, Otterson GA, Plass C (2007) Unraveling the epigenetic code of cancer for therapy. Trends Genet 23(9):449–456. doi:10.1016/j.tig.2007.07.005

    Article  CAS  PubMed  Google Scholar 

  28. Feinberg AP (2007) Phenotypic plasticity and the epigenetics of human disease. Nature 447(7143):433–440. doi:10.1038/nature05919

    Article  CAS  PubMed  Google Scholar 

  29. Baylin SB (2005) DNA methylation and gene silencing in cancer. Nat Clin Pract Oncol 2(Suppl 1):S4–S11. doi:10.1038/ncponc0354

    Article  CAS  PubMed  Google Scholar 

  30. Goll MG, Bestor TH (2005) Eukaryotic cytosine methyl transferases. Annu Rev Biochem 74:481–514. doi:10.1146/annurev.biochem.74.010904.153721

    Article  CAS  PubMed  Google Scholar 

  31. Zuo J, Xia J, Ju F, Yan J, Zhu A, Jin S, Shan T, Zhou H (2013) MicroRNA-148a can regulate runt-related transcription factor 3 gene expression via modulation of DNA methyltransferase 1 in gastric cancer. Mol Cells 35(4):313–319. doi:10.1007/s10059-013-2314-9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Xu Q, Jiang Y, Yin Y, Li Q, He J, Jing Y, Qi YT, Li W, Lu B, Peiper SS, Jiang BH, Liu LZ (2013) A regulatory circuit of miR-148a/152 and DNMT1 in modulating cell transformation and tumor angiogenesis through IGF-IR and IRS1. J Mol Cell Biol 5(1):3–13. doi:10.1093/jmcb/mjs049

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China, No. 81171915 and 91229107, and the Fundamental Research Funds for the Central Universities (CXLX12_0074).

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Fan.

Additional information

Fengchang Qiao and Kun Zhang have equal contribution to this manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, F., Zhang, K., Gong, P. et al. Decreased miR-30b-5p expression by DNMT1 methylation regulation involved in gastric cancer metastasis. Mol Biol Rep 41, 5693–5700 (2014). https://doi.org/10.1007/s11033-014-3439-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3439-4

Keywords

Navigation