Skip to main content
Log in

Genome-wide identification and functional prediction of BYPASS1-related (BPS1) homologs in soybean

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

The BYPASS1-related gene (BPS1) encodes a protein with an unknown functional domain that regulates plant organ growth and development by inhibiting the continuous production of a root-derived long-distance signaling molecule called bypass (bps). We conducted a comprehensive study to investigate the BPS gene family in soybean and identified twenty-three BPS genes in Glycine max and twenty BPS genes in Glycine soja (wild soybean). Collinearity analysis revealied the existence of multiple orthologs of soybean BPS genes in wild soybean, indicating incomplete conservation between the BPS genes of soybean and wild soybean. Phylogenetic analysis successfully categorized all BPS genes into five distinct groups. We further scrutinized their chromosomal locations, gene structures, conserved motifs, cis-acting elements, and expression patterns. Leveraging publicly available data on genetic variation, phenotypic variation, and single-cell transcriptome sequencing of root nodules, we discovered a potential association between BPS genes and multiple soybean traits, particularly those related to the root nodule phenotype. This pioneering study provides a systematic and comprehensive examination of the BPS gene family in soybean. The findings establish a robust foundation for future investigations into the functional roles of BPS genes in plant growth and development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data used in this paper that has been released.

References

  • Ablazov A, Mi J, Jamil M, Jia KP, Wang JY, Feng Q, Al-Babili S (2020) The apocarotenoid zaxinone is a positive regulator of strigolactone and abscisic acid biosynthesis in arabidopsis roots. Front Plant Sci 14(11):578

    Article  Google Scholar 

  • Adhikari E, Lee DK, Giavalisco P, Sieburth LE (2013) Long-distance signaling in bypass1 mutants: bioassay development reveals the bps signal to be a metabolite. Mol Plant 6(1):164–173

    Article  CAS  PubMed  Google Scholar 

  • Arthikala MK, Nanjareddy K, Lara M (2018) In BPS1 Downregulated roots, the BYPASS1 signal disrupts the induction of cortical cell divisions in bean-Rhizobium symbiosis. Genes (Basel) 9(1):11

    Article  PubMed  Google Scholar 

  • Bailey TL, Johnson J, Grant CE, Noble WS (2015) The MEME suite. Nucleic Acids Res 43(W1):W39–W49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, Xia R (2020) TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant 13(8):1194–1202

    Article  CAS  PubMed  Google Scholar 

  • Choi WG, Miller G, Wallace I, Harper J, Mittler R, Gilroy S (2017) Orchestrating rapid long-distance signaling in plants with Ca2+. ROS and electrical signals Plant J 90(4):698–707

    CAS  PubMed  Google Scholar 

  • Christmann A, Grill E, Huang J (2013) Hydraulic signals in long-distance signaling. Curr Opin Plant Biol 16(3):293–300

    Article  CAS  PubMed  Google Scholar 

  • Garg VK, Avashthi H, Tiwari A, Jain PA, Ramkete PW, Kayastha AM, Singh VK (2016) MFPPI - multi FASTA ProtParam interface. Bioinformation 12(2):74–77

    Article  PubMed  PubMed Central  Google Scholar 

  • Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40(Database issue):D1178–D1186

    Article  CAS  PubMed  Google Scholar 

  • Hanada K, Zhang X, Borevitz JO, Li WH, Shiu SH (2007) A large number of novel coding small open reading frames in the intergenic regions of the Arabidopsis thaliana genome are transcribed and/or under purifying selection. Genome Res 17(5):632–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu B, Jin J, Guo AY, Zhang H, Luo J, Gao G (2015) GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31(8):1296–1297

    Article  PubMed  Google Scholar 

  • Kang YW, Kim RN, Cho HS, Kim WT, Choi D, Pai HS (2008) Silencing of a BYPASS1 homolog results in root-independent pleiotrophic developmental defects in Nicotiana benthamiana. Plant Mol Biol 68(4-5):423–437

    Article  CAS  PubMed  Google Scholar 

  • Kondhare KR, Patil NS, Banerjee AK (2021) A historical overview of long-distance signalling in plants. J Exp Bot 72(12):4218–4236

    Article  CAS  PubMed  Google Scholar 

  • Kudla J, Becker D, Grill E, Hedrich R, Hippler M, Kummer U, Parniske M, Romeis T, Schumacher K (2018) Advances and current challenges in calcium signaling. New Phytol 218(2):414–431

    Article  PubMed  Google Scholar 

  • Kulich I, Cole R, Drdová E, Cvrcková F, Soukup A, Fowler J, Zárský V (2010) Arabidopsis exocyst subunits SEC8 and EXO70A1 and exocyst interactor ROH1 are involved in the localized deposition of seed coat pectin. New Phytol 188(2):615–625

    Article  CAS  PubMed  Google Scholar 

  • Lee DK, Sieburth LE (2012) The bps signal: embryonic arrest from an auxin-independent mechanism in bypass triple mutants. Plant Signal Behav 7(6):698–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee DK, Parrott DL, Adhikari E, Fraser N, Sieburth LE (2016) The mobile bypass signal arrests shoot growth by disrupting shoot apical meristem maintenance, cytokinin signaling, and WUS transcription factor expression. Plant Physiol 171(3):2178–2190

    Article  PubMed  PubMed Central  Google Scholar 

  • Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30(1):325–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Du H, Li P, Shen Y, Peng H, Liu S, Zhou GA, Zhang H, Liu Z, Shi M, Huang X, Li Y, Zhang M, Wang Z, Zhu B, Han B, Liang C, Tian Z (2020) Pan-genome of wild and cultivated soybeans. Cell 182(1):162–176.e13

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Zhang Y, Liu X, Shen Y, Tian D, Yang X, Liu S, Ni L, Zhang Z, Song S, Tian Z (2023b) SoyOmics: a deeply integrated database on soybean multi-omics. Mol Plant S1674-2052(23):00075–00078

    Google Scholar 

  • Liu Z, Kong X, Long Y, Liu S, Zhang H, Jia J, Cui W, Zhang Z, Song X, Qiu L, Zhai J, Yan Z (2023a) Integrated single-nucleus and spatial transcriptomics captures transitional states in soybean nodule maturation. Nat Plants 9(4):515–524

    Article  CAS  PubMed  Google Scholar 

  • Luo H, He W, Li D, Bao Y, Riaz A, Xiao Y, Song J, Liu C (2020) Effect of methyl jasmonate on carotenoids biosynthesis in germinated maize kernels. Food Chem 1(307):125525

    Article  Google Scholar 

  • Moreau C, Gautrat P, Frugier F (2021) Nitrate-induced CLE35 signaling peptides inhibit nodulation through the SUNN receptor and miR2111 repression. Plant Physiol 185(3):1216–1228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mouchel CF, Leyser O (2007) Novel phytohormones involved in long-range signaling. Curr Opin Plant Biol 10(5):473–476

    Article  CAS  PubMed  Google Scholar 

  • Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K (2014) The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Front Plant Sci 16(5):170

    Google Scholar 

  • Putterill J, Varkonyi-Gasic E (2016) FT and florigen long-distance flowering control in plants. Curr Opin Plant Biol 33:77–82

    Article  CAS  PubMed  Google Scholar 

  • Rehman NU, Ali M, Ahmad MZ, Liang G, Zhao J (2018) Strigolactones promote rhizobia interaction and increase nodulation in soybean (Glycine max). Microb Pathog 114:420–430

    Article  PubMed  Google Scholar 

  • Roy S, Liu W, Nandety RS, Crook A, Mysore KS, Pislariu CI, Frugoli J, Dickstein R, Udvardi MK (2020) Celebrating 20 years of genetic discoveries in legume nodulation and symbiotic nitrogen fixation. Plant Cell 32(1):15–41

    Article  CAS  PubMed  Google Scholar 

  • Savojardo C, Martelli PL, Fariselli P, Profiti G, Casadio R (2018) BUSCA: an integrative web server to predict subcellular localization of proteins. Nucleic Acids Res 46(W1):W459–W466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi F, Shinozaki K (2019) Long-distance signaling in plant stress response. Curr Opin Plant Biol 47:106–111

    Article  CAS  PubMed  Google Scholar 

  • Turnbull C (2011) Long-distance regulation of flowering time. J Exp Bot 62(13):4399–4413

    Article  CAS  PubMed  Google Scholar 

  • Van Norman JM, Sieburth LE (2007) Dissecting the biosynthetic pathway for the bypass1 root-derived signal. Plant J 49(4):619–628

    Article  PubMed  Google Scholar 

  • Van Norman JM, Frederick RL, Sieburth LE (2004) BYPASS1 negatively regulates a root-derived signal that controls plant architecture. Curr Biol 14(19):1739–1746

    Article  PubMed  Google Scholar 

  • Varsani S, Basu S, Williams WP, Felton GW, Luthe DS, Louis J (2016) Intraplant communication in maize contributes to defense against insects. Plant Signal Behav 11(8):e1212800

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X, Chen K, Zhou M, Gao Y, Huang H, Liu C, Fan Y, Fan Z, Wang Y, Li X (2022) GmNAC181 promotes symbiotic nodulation and salt tolerance of nodulation by directly regulating GmNINa expression in soybean. New Phytol 236(2):656–670

    Article  CAS  PubMed  Google Scholar 

  • Wheeldon CD, Bennett T (2021) There and back again: an evolutionary perspective on long-distance coordination of plant growth and development. Semin Cell Dev Biol 109:55–67

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Guo Y (2018) Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytol 217(2):523–539

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grants 32090064 to F.K.) and the National Natural Science Foundation of China (32072086).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Fanjiang Kong and Lin Zhao designed the research; Xinxin Pei completed the bioinformatics analysis, wrote and revised the manuscript; Fan Wang, Haiping Du, and Milan He modified the manuscript; Lanxin Li, Chuanjie Gou, Zheng Chen, and Yanan Wang downloaded the data; and all authors read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Fanjiang Kong or Lin Zhao.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Yes.

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Soybean Functional Genomics.

Supplementary information

Fig. s1

Haplotype analysis of GmBPS genes. (PNG 1084 kb)

High resolution image (EPS 6283 kb)

Fig. s2

UAMP visualization of GmBPS genes in single-cell gene maps of soybean nodules. (PNG 444 kb)

High resolution image (EPS 13505 kb)

Fig. s3

Barplot visualization of GmBPS genes in single-cell gene maps of soybean nodules. (PNG 3014 kb)

High resolution image (EPS 4809 kb)

Table s1

Results of Ka/Ks analysis between GmBPS. (XLSX 39 kb)

Table s2

Blast results of GmBPS14 and GmBPS21 in publicly available soybean genomes. (XLSX 19 kb)

Table s3

Details of cis-acting elements in the promoter regions in Glycine spp., Arabidopsis and P.vulgaris. (XLSX 463 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pei, X., Wang, F., Du, H. et al. Genome-wide identification and functional prediction of BYPASS1-related (BPS1) homologs in soybean. Mol Breeding 43, 59 (2023). https://doi.org/10.1007/s11032-023-01403-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-023-01403-2

Keywords

Navigation