Skip to main content
Log in

Regional association and transcriptome analysis revealed candidate genes controlling plant height in Brassica napus

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Plant height is a key morphological trait in rapeseed, which not only plays an important role in determining plant architecture, but is also an important characteristic related to yield. Presently, the improvement of plant architecture is a major challenge in rapeseed breeding. This work was carried out to identify genetic loci related to plant height in rapeseed. In this study, a genome-wide association study (GWAS) of plant height was performed using a Brassica 60 K Illumina Infinium SNP array and 203 Brassica napus accessions. Eleven haplotypes containing important candidate genes were detected and significantly associated with plant height on chromosomes A02, A03, A05, A07, A08, C03, C06, and C09. Moreover, regional association analysis of 50 resequenced rapeseed inbred lines was used to further analyze these eleven haplotypes and revealed nucleotide variation in the BnFBR12-A08 and BnCCR1-C03 gene regions related to the phenotypic variation in plant height. Furthermore, coexpression network analysis showed that BnFBR12-A08 and BnCCR1-C03 were directly connected with hormone genes and transcription factors and formed a potential network regulating the plant height of rapeseed. Our results will aid in the development of haplotype functional markers to further improve plant height in rapeseed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

GWAS :

Genome-wide association study

QTL :

Quantitative trait loci

SNP :

Single nucleotide polymorphism

MAF :

Minor allele frequency

FDR :

False discovery rate

PCA :

Principal component analysis

WGCNA :

Weighted correlation network analysis

PCCs :

Pearson correlation coefficients

H 2 :

Broad-sense heritability

GO :

Gene ontology

FBR12 :

FUMONISIN B1-RESISTANT12

CCR1 :

CINNAMOYL COA REDUCTASE 1

References

  • Abbai R, Singh VK, Nachimuthu VV et al (2019) Haplotype analysis of key genes governing grain yield and quality traits across 3K RG panel reveals scope for the development of tailor-made rice with enhanced genetic gains. Plant Biotechnol J 17:1612–1622

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Anders S, Pyl PT, Huber W (2015) HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31:166–169

  • Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48

    Article  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289–300

    Google Scholar 

  • Biemelt S, Tschiersch H, Sonnewald U (2004) Impact of altered gibberellin metabolism on biomass accumulation, lignin biosynthesis, and photosynthesis in transgenic tobacco plants. Plant Physiol 135:254–265

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bonawitz ND, Chapple C (2013) Can genetic engineering of lignin deposition be accomplished without an unacceptable yield penalty? Curr Opin Biotechnol 24:336–343

    Article  CAS  PubMed  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE et al (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Chalhoub B, Denoeud F, Liu S et al (2014) Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345:950–953

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Zhou Y, Chen Y, Gu J (2018) fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884–i890

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen C, Chen H, Zhang Y et al (2020) TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant 13:1194–1202

    Article  CAS  PubMed  Google Scholar 

  • Clouse SD (2011) Brassinosteroids. Arabidopsis Book 9:e0151

    Article  PubMed Central  PubMed  Google Scholar 

  • Dang VH, Hill CB, Zhang XQ et al (2020) Genetic dissection of the interactions between semi-dwarfing genes sdw1 and ari-e and their effects on agronomic traits in a barley MAGIC population. Mol Breeding 40:64

    Article  CAS  Google Scholar 

  • Davière JM, Wild M, Regnault T et al (2014) Class I TCP-DELLA interactions in inflorescence shoot apex determine plant height. Curr Biol 24:1923–1928

    Article  PubMed  Google Scholar 

  • Dill A, Sun T (2001) Synergistic derepression of gibberellin signaling by removing RGA and GAI function in Arabidopsis thaliana. Genetics 159:777–785

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dong H, Tan C, Li Y et al (2018) Genome-wide association study reveals both overlapping and independent genetic loci to control seed weight and silique length in Brassica napus. Front Plant Sci 9:921

    Article  PubMed Central  PubMed  Google Scholar 

  • Dong H, Yan S, Liu J et al (2019) TaCOLD1 defines a new regulator of plant height in bread wheat. Plant Biotechnol J 17:687–699

    Article  CAS  PubMed  Google Scholar 

  • Edwards D, Batley J, Snowdon RJ (2013) Accessing complex crop genomes with next-generation sequencing. Theor Appl Genet 126:1–11

    Article  CAS  PubMed  Google Scholar 

  • Feng H, Chen Q, Feng J et al (2007) Functional characterization of the Arabidopsis eukaryotic translation initiation factor 5A–2 that plays a crucial role in plant growth and development by regulating cell division, cell growth, and cell death. Plant Physiol 144:1531–1545

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guo J, Hu X, Duan R (2005) Interactive effects of cytokinins, light, and sucrose on the phenotypes and the syntheses of anthocyanins and lignins in cytokinin overproducing transgenic Arabidopsis. J Plant Growth Regul 24:93–101

    Article  CAS  Google Scholar 

  • Han X, Xu ZR, Zhou L et al (2021) Identification of QTNs and their candidate genes for flowering time and plant height in soybean using multi-locus genome-wide association studies. Mol Breeding 41:39

    Article  Google Scholar 

  • Hardy OJ, Vekemans X (2002) spagedi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620

    Article  Google Scholar 

  • Hargrove TR, Cabanilla VL (1979) The impact of semidwarf varieties on Asian rice-breeding programs. Bioscience 29:731–735

    Article  Google Scholar 

  • Harrell FE, Dupont C (2018) Hmisc: harrell miscellaneous. R package version 4.1–1. R Found Stat Comput. https://CRAN.R-project.org/package=Hmisc

  • Hedden P (2003) The genes of the Green Revolution. Trends Genet 19:5–9

    Article  CAS  PubMed  Google Scholar 

  • Jurado S, Diaz-Trivino S, Abraham Z et al (2008) SKP2A protein, an F-box that regulates cell division, is degraded via the ubiquitin pathway. Plant Signal Behav 3:810–812

    Article  PubMed Central  PubMed  Google Scholar 

  • Khadr A, Wang GL, Wang YH et al (2020) Effects of auxin (indole-3-butyric acid) on growth characteristics, lignification, and expression profiles of genes involved in lignin biosynthesis in carrot taproot. Peer J 8:e10492

    Article  PubMed Central  PubMed  Google Scholar 

  • Khush GS (1999) Green revolution: preparing for the 21st century. Genome 42:646–655

    Article  CAS  PubMed  Google Scholar 

  • Lacombe E, Hawkins S, Van Doorsselaere J et al (1997) Cinnamoyl CoA reductase, the first committed enzyme of the lignin branch biosynthetic pathway: cloning, expression and phylogenetic relationships. Plant J 11:429–441

    Article  CAS  PubMed  Google Scholar 

  • Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9:1–13

    Article  Google Scholar 

  • Li F, Chen B, Xu K et al (2016) A genome-wide association study of plant height and primary branch number in rapeseed (Brassica napus). Plant Sci 242:169–177

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Tong L, Deng L et al (2017) Evaluation of ZmCCT haplotypes for genetic improvement of maize hybrids. Theor Appl Genet 130:2587–2600

    Article  PubMed  Google Scholar 

  • Li H, Li J, Song J et al (2019) An auxin signaling gene BnaA3. IAA7 contributes to improved plant architecture and yield heterosis in rapeseed. New Phytol 222:837–851

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Yu H, Rao X et al (2021) Abscisic acid regulates secondary cell-wall formation and lignin deposition in Arabidopsis thaliana through phosphorylation of NST1. Proc Natl Acad Sci 118:e2010911118

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Mei DS, Wang HZ, Hu Q et al (2009) QTL analysis on plant height and flowering time in Brassica napus. Plant Breed 128:458–465

    Article  Google Scholar 

  • Muhammad A, Li J, Hu W et al (2021) Uncovering genomic regions controlling plant architectural traits in hexaploid wheat using different GWAS models. Sci Rep 11:6767

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Noguchi T, Fujioka S, Choe S et al (1999) Brassinosteroid-insensitive dwarf mutants of Arabidopsis accumulate brassinosteroids. Plant Physiol 121:743–752

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Qian L, Qian W, Snowdon RJ (2014) Sub-genomic selection patterns as a signature of breeding in the allopolyploid Brassica napus genome. BMC Genomics 15:1170

    Article  PubMed Central  PubMed  Google Scholar 

  • Rao X, Dixon RA (2017) Brassinosteroid mediated cell wall remodeling in grasses under abiotic stress. Front Plant Sci 8:806

    Article  PubMed Central  PubMed  Google Scholar 

  • Ren H, Gray WM (2015) SAUR proteins as effectors of hormonal and environmental signals in plant growth. Mol Plant 8:1153–1164

    Article  CAS  PubMed  Google Scholar 

  • Ren B, Chen Q, Hong S et al (2013) The Arabidopsis eukaryotic translation initiation factor eIF5A-2 regulates root protoxylem development by modulating cytokinin signaling. Plant Cell 25:3841–3857

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Revelle WR (2017) psych: Procedures for psychological, psychometric, and personality research. Northwestern University, Evanston, Illinois. R package version 2.2.3. https://CRAN.R-project.org/package=psych

  • Ruel K, Berrio-Sierra J, Derikvand MM et al (2009) Impact of CCR1 silencing on the assembly of lignified secondary walls in Arabidopsis thaliana. New Phytol 184:99–113

    Article  CAS  PubMed  Google Scholar 

  • Shah L, Yahya M, Shah SMA et al (2019) Improving lodging resistance: using wheat and rice as classical examples. Int J Mol Sci 20:4211

    Article  PubMed Central  PubMed  Google Scholar 

  • Shen Y, Xiang Y, Xu E et al (2018) Major co-localized QTL for plant height, branch initiation height, stem diameter, and flowering time in an alien introgression derived Brassica napus DH population. Front Plant Sci 9:390

    Article  PubMed Central  PubMed  Google Scholar 

  • Shin JH, Blay S, McNeney B, Graham J (2006) LDheatmap: an R function for graphical display of pairwise linkage disequilibria between single nucleotide polymorphisms. J Stat Softw 16:1–10

    Article  Google Scholar 

  • Smoot ME, Ono K, Ruscheinski J et al (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27:431–432

    Article  CAS  PubMed  Google Scholar 

  • Stephens JC, Schneider JA, Tanguay DA et al (2001) Haplotype variation and linkage disequilibrium in 313 human genes. Science 293:489–493

    Article  CAS  PubMed  Google Scholar 

  • Strimmer K (2008) fdrtool: a versatile R package for estimating local and tail area-based false discovery rates. Bioinformatics 24:1461–1462

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Fan XY, Cao DM et al (2010) Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Dev Cell 19:765–777

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sun C, Wang B, Yan L et al (2016) Genome-wide association study provides insight into the genetic control of plant height in rapeseed (Brassica napus L.). Front Plant Sci 7:1102

  • VanRaden PM (2008) Efficient methods to compute genomic predictions. J Dairy Sci 91:4414–4423

    Article  CAS  PubMed  Google Scholar 

  • Villanueva RAM, Chen ZJ (2019) ggplot2: elegant graphics for data analysis (2nd ed.). Meas-Interdiscip Res 17:160–167

  • Voss-Fels K, Snowdon RJ (2016) Understanding and utilizing crop genome diversity via high-resolution genotyping. Plant Biotechnol J 14:1086–1094

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Li J (2008) Molecular basis of plant architecture. Annu Rev Plant Biol 59:253–279

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Wang H, Long Y et al (2015) Dynamic and comparative QTL analysis for plant height in different developmental stages of Brassica napus L. Theor Appl Genet 128:1175–1192

    Article  PubMed  Google Scholar 

  • Xue J, Luo D, Xu D et al (2015) CCR1, an enzyme required for lignin biosynthesis in Arabidopsis, mediates cell proliferation exit for leaf development. Plant J 83:375–387

    Article  CAS  PubMed  Google Scholar 

  • Yao M, Guan M, Yang Q et al (2021) Regional association analysis coupled with transcriptome analyses reveal candidate genes affecting seed oil accumulation in Brassica napus. Theor Appl Genet 134:1545–1555

    Article  CAS  PubMed  Google Scholar 

  • Yin L, Zhang H, Tang Z et al (2021) rMVP: a memory-efficient, visualization-enhanced, and parallel-accelerated tool for genome-wide association study. Genom Proteom Bioinf 19:619–628

    Article  Google Scholar 

  • Yu J, Pressoir G, Briggs WH et al (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Hu X, Zhu Y, Mao D (2020) Re-evaluation of the rice ‘Green Revolution’ gene: the weak allele SD1-EQ from japonica rice may be beneficial for super indica rice breeding in the post-Green Revolution era. Mol Breeding 40:1–12

    Article  Google Scholar 

  • Zhang Y, Wan J, He L et al (2019) Genome-wide association analysis of plant height using the Maize F1 population. Plants 8:432

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zheng X, Levine D, Shen J et al (2012) A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics 28:3326–3328

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zheng M, Zhang L, Tang M et al (2020) Knockout of two BnaMAX 1 homologs by CRISPR/Cas9-targeted mutagenesis improves plant architecture and increases yield in rapeseed (Brassica napus L.). Plant Biotechnol J 18:644–654

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank other lab members for their help in this article revision and drawing. We are grateful to the editors and reviewers for their constructive comments on the manuscript.

Funding

This study was funded by the National Nature Science Foundation of China (grant No. 32072100).

Author information

Authors and Affiliations

Authors

Contributions

Lunwen Qian and Xinghua Xiong conceived the research idea and plans. Rui Ren and Wei Liu prepared the manuscript. Rui Ren, Yuan Jia, and Min Yao performed data mining and bioinformatics. Luyao Huang and Wenqian Li carried out reagents and the field experiments. Xin He, Mei Guan, Zhongsong Liu, Chunyun Guan, Wei Hua, Xinghua Xiong, and Lunwen Qian read and commented the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Xinghua Xiong or Lunwen Qian.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11032_2022_1337_MOESM1_ESM.pptx

Supplementary file 1 Figure S1 Correlation coefficients and frequency distributions for plant height in 50 resequencing Chinese semi-winter rapeseed accessions. Figure S2 Six haplotype region carrying candidate genes significant association with plant height on chromosome A02, A03, A05 and A07 in 203 Chinese semi-winter rapeseed accessions, respectively. Red triangles represent genes related to plant height. The heatmap spans the SNP markers in LD with the most strongly associated SNPs. Figure S3 Five haplotype region carrying candidate genes significant association with plant height on chromosome A08, C03, C06 and C09 in 203 Chinese semi-winter rapeseed accessions, respectively. Red triangles represent genes related to plant height. The heatmap spans the SNP markers in LD with the most strongly associated SNPs. Figure S4 Different haplotype genes’ expression of BnFBR12-A08 and BnCCR1-C03 by Quantitative real-time PCR. ***p ≤ 0.001. Figure S5 Coexpression network analysis. The red nodes represent candidate genes BnCCR1-C03 and BnFBR12-A08. The triangle node and rhombus node represent genes directly linked to these two candidate genes. Figure S6 Gene Ontology (GO) enrichment analysis in blue module (a) and yellow module (b). Each class top 10 gene ontology (GO) terms had lined out in bubble chart. The bubble size represents the number genes of the category. The bubble color represents the size of the P value. Figure S7 Coexpression network of BnFBR12-A08 in Brassica napus. Red nodes represent BnFBR12-A08 gene. These genes from the coexpression network are divided into the following categories: Abscisic acid pathway (Lime nodes), Auxin pathway (Cyan nodes), Cytokinin pathway (Pink nodes), Gibberellin pathway (Lavender nodes) and Transcription factor (Dimgray nodes). (PPTX 6723 KB)

Supplementary file 2 (XLSX 125 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, R., Liu, W., Yao, M. et al. Regional association and transcriptome analysis revealed candidate genes controlling plant height in Brassica napus. Mol Breeding 42, 69 (2022). https://doi.org/10.1007/s11032-022-01337-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-022-01337-1

Keywords

Navigation