Skip to main content
Log in

Fine mapping of wmv1551, a resistance gene to Watermelon mosaic virus in melon

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Recessive resistance to Watermelon mosaic virus (WMV) in melon has previously been reported in the African accession TGR-1551. Using a population of recombinant inbred lines (RIL), derived from a cross between TGR-1551 and the susceptible Spanish cultivar ‘Bola de Oro’ (BO), a major quantitative trait locus (QTL) controlling the resistance was previously mapped to a region of approximately 760 kb in chromosome 11. Minor QTLs were also reported with lower effects, dependent on the environmental conditions. A genotyping by sequencing (GBS) analysis of the RIL population has provided new information that allowed the better location of the major QTL in chromosome 11. Moreover, three minor QTLs in chromosomes 4, 5, and 6 were identified. Generations derived from the RIL population were subsequently phenotyped for resistance and genotyped with SNP markers to fine map the resistance derived from TGR-1551. The results obtained have allowed to narrow the position of the resistance gene on chromosome 11, designated as wmv1551, to a 141-kb region, and the confirmation of a minor QTL in chromosome 5. The effect of the minor QTL in chromosome 5 was significant in heterozygote plants for the introgression in chromosome 11. The SNP markers linked to both QTLs will be useful in breeding programs aimed at the introgression of WMV resistance derived from TGR-1551. Future work will be directed to identifying the resistance gene, wmv1551, in the candidate region on chromosome 11.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abreu-Neto JB, Turchetto-Zolet AC, Valter de Oliveira LF, Bodanese Zanettini MH, Margis-Pinheiro M (2013) Heavy metal-associated isoprenylated plant protein (HIPP): characterization of a family of proteins exclusive to plants. FEBS J 280:1604–1616

    Article  Google Scholar 

  • Aragonés V, Pérez-de-Castro A, Cordero T, Cebolla-Cornejo J, López C, Picó B, Daròs JA (2018) A Watermelon mosaic virus clone tagged with the yellow visual maker phytoene synthase facilitates scoring infectivity in melon breeding programs. Eur J Plant Pathol 153:1317–1323. https://doi.org/10.1007/s10658-018-01621-x

    Article  CAS  Google Scholar 

  • Bachlava E, Bertrand F, De Vries J, Joobeur T, King J, Kraakman P (2014) Patent No. US20140059712.Multiple-virus-resistant melon

  • Chen S, Li F, Liu D, Jiang C, Cui L, Shen L, Liu G, Yang A (2017) Dynamic expression analysis of early response genes induced by potato virus Y in PVY-resistant Nicotiana tabacum. Plant Cell Rep 36:297–311

    Article  CAS  Google Scholar 

  • Colcombet J, Hirt H (2008) Arabidopsis MAPKs: a complex signalling network involved in multiple biological processes. Biochem J 413:217–226

    Article  CAS  Google Scholar 

  • Cordero T, Cerdán L, Carbonell A, Katsarou K, Kalantidis K, Daròs JA (2017) Dicer-like 4 is involved in restricting the systemic movement of Zucchini yellow mosaic virus in Nicotiana benthamiana. Mol Plant-Microbe Interact 30:63–71

    Article  CAS  Google Scholar 

  • Desbiez C, Joannon B, Wipf-Scheibel C, Chandeysson C, Lecoq H (2009) Emergence of new strains of Watermelon mosaic virus in South-eastern France: evidence for limited spread but rapid local population shift. Virus Res 141:201–208

    Article  CAS  Google Scholar 

  • Desbiez C, Lecoq H (2008) Evidence for multiple intraspecific recombinants in natural populations of Watermelon mosaic virus (WMV, Potyvirus). Arch Virol 153:1749–1754

    Article  CAS  Google Scholar 

  • Díaz-Pendón JA, Fernández-Muñoz R, Gómez-Guillamón ML, Moriones E (2005) Inheritance of resistance to Watermelon mosaic virus in Cucumis melo that impairs virus accumulation, symptom expression, and aphid transmission. Phytopathology 95:840–846

    Article  Google Scholar 

  • Díaz-Pendón JA, Mallor C, Soria C, Camero R, Garzo E, Fereres A, Alvarez JM, Gómez-Guillamón ML, Luis-Arteaga M, Moriones E (2003) Potential sources of resistance for melon to nonpersistently aphid-borne viruses. Plant Dis 87:960–964

    Article  Google Scholar 

  • Díaz-Pendón JA, Truniger V, Nieto C, Garcia-Mas J, Bendahmane A, Aranda MA (2004) Advances in understanding recessive resistance to plant viruses. Mol Plant Pathol 5:223–233

    Article  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Esteras C, Formisano G, Roig C, Díaz A, Blanca J, Garcia-Mas J, Gómez-Guillamón ML, López-Sesé AI, Lázaro A, Monforte AJ, Picó B (2013) SNP genotyping in melons: genetic variation, population structure, and linkage disequilibrium. Theor Appl Genet 126:1285–1303

    Article  CAS  Google Scholar 

  • Fereres A, Moreno A (2011) Integrated control measures against viruses and their vectors. In: Caranta C, Aranda MA, Tepfer M, López-Moya J (eds) Recent Advances in Plant Virology, Caister Academic Press, Norfolk, pp 237–262

  • Fernández-Silva I, Eduardo I, Blanca J, Esteras C, Picó B, Nuez F, Arús P, García-Mas J, Monforte A (2008) Bin mapping of genomic and EST-derived SSRs in melon (Cucumis melo L.). Theor Appl Genet 118:139–150

    Article  Google Scholar 

  • Fukino N, Sakata Y, Kunihisa M, Matsumoto S (2007) Characterization of novel simple sequence repeat (SSR) markers for melon (Cucumis melo L.) and their use for genotyping identification. J Hort Sci Biotechnol 82:330–334 Details about primer sequences: http://cse.naro.affrc.go.jp/nbk/List_CMN.xls

    Article  CAS  Google Scholar 

  • Gilbert RZ, Kyle MM, Munger HM, Gray SM (1994) Inheritance of resistance to Watermelon mosaic virus in Cucumis melo L. HortSci 29:107–110

    Article  Google Scholar 

  • González VM, Aventín N, Centeno E, Puigdomènech P (2013) High presence/absence gene variability in defense-related gene clusters of Cucumis melo. BMC Genomics 14:782

    Article  Google Scholar 

  • González-Ibeas D, Blanca J, Donaire L, Saladié M, MArcarell-Creus A, Cano-Delgado A, García-Mas J, Llave C, Aranda MA (2011) Analysis of the melon (Cucumis melo) small RNAome by high-throughput pyrosequencing. BMC Genomics 12:393

    Article  Google Scholar 

  • González-Ibeas D, Cañizares J, Aranda MA (2012) Microarray analysis shows that recessive resistance to Watermelon mosaic virus in melon is associated with the induction of defense response genes. Mol Plant-Microbe Interact 25:107–118

    Article  Google Scholar 

  • Hashimoto M, Neriya Y, Yamaji Y, Namba S (2016) Recessive resistance to plant viruses: potential resistance genes beyond translation initiation factors. Front Microbiol 7:1695

    Article  Google Scholar 

  • JUAN A. DIAZ-PENDON, VERONICA TRUNIGER, CRISTINA NIETO, JORDI GARCIA-MAS, ABDELHAFID BENDAHMANE, MIGUEL A. ARANDA, (2004) Advances in understanding recessive resistance to plant viruses. Molecular Plant Pathology 5 (3):223-233

    Article  CAS  Google Scholar 

  • Juárez M, Legua P, Mengual CM, Kassem MA, Sempere RN, Gómez P, Truniger V, Aranda MA (2013) Relative incidence, spatial distribution and genetic diversity of cucurbit viruses in eastern Spain. Ann Appl Biol 162:362–370

    Article  Google Scholar 

  • Lecoq H, Desbiez C (2008) Watermelon mosaic virus and Zucchini yellow mosaic virus. In: Mahy BWJ and Van Regenmortel MHV (eds) Encyclopedia of virology, vol. 5, 3rd edn. Elsevier, Oxford, pp 433–440

    Chapter  Google Scholar 

  • Leida C, Moser C, Esteras C, Sulpice R, Lunn JE, De Langen F, Monforte AJ, Picó B (2015) Variability of candidate genes, genetic structure and association with sugar accumulation and climacteric behavior in abroad germplasm collection of melon (Cucumis melo L). BMC Genet 16:28

    Article  Google Scholar 

  • Lincoln S, Daly M, Lander ES (1993) Constructing genetic maps with MAPMAKER/EXP 3.0: a tutorial and reference manual. Whitehead Inst Biomed Res Tech Rpt. 3 edition. Whitehead Institute for Biomedical Research, Cambridge

  • Maule A, Caranta C, Boulton MI (2007) Sources of natural resistance to plant viruses: status and prospects. Mol Plant Pathol 8:223–231

    Article  CAS  Google Scholar 

  • Moyer JW, Kennedy GG, Romanow LR (1985) Resistance to Watermelon Mosaic Virus II multiplication in Cucumis melo. Phytopathol 75:201–205

    Article  Google Scholar 

  • Munger HM (1991) Progress in breeding melons for watermelon mosaic resistance. Rep Cucurbit Genet Coop 14:53–54

    Google Scholar 

  • Ouibrahim L, Mazier M, Estevan J, Pagny G, Decroocq V, Desbiez C, Moretti A, Gallois JL, Caranta C (2014) Cloning of the Arabidopsis rwm1 gene for resistance to Watermelon mosaic virus points to a new function for natural virus resistance genes. Plant J 79:705–716

    Article  CAS  Google Scholar 

  • Palomares-Ríus F, Viruel M, Yuste-Lisbona F, López-Sesé A, Gómez-Guillamón ML (2011) Simple sequence repeat markers linked to QTL for resistance to Watermelon mosaic virus in melon. Theor Appl Genet 123:1207–1214

    Article  Google Scholar 

  • Palomares-Ríus FJ, Garcés-Claver A, Gómez-Guillamón ML (2016) Detection of Two QTLS Associated with Resistance to Cucurbit Yellow Stunting Disorder Virus in Melon Line TGR 1551. In: Kozik EU and Paris HS (eds.) Proceedings of Cucurbitaceae 2016, XIth Eucarpia Meeting on Genetics and Breeding of Cucurbitaceae, July 24–28, 2016, Warsaw, Poland, pp 334–337

  • Perpiñá G, Esteras C, Gibon Y, Monforte AJ, Picó B (2016) A new genomic library of melon introgression lines in a cantaloupe genetic background for dissecting desirable agronomical traits. BMC Plant Biol 16:154

    Article  Google Scholar 

  • Provvidenti R, Robinson RW, Munger HM (1978) Resistance in feral species to six viruses infecting Cucurbita. Plant Dis Report 62:326

    Google Scholar 

  • Rodríguez-Hernández AM, Gosalvez B, Sempere RN, Burgos L, Aranda MA, Truniger V (2012) Melon RNA interference (RNAi) lines silenced for Cm-eIF4E show broad virus resistance. Mol Plant Pathol 13:755–763

    Article  Google Scholar 

  • Sáez C, Esteras C, Martínez C, Ferriol M, Dhillon NPS, López C, Picó B (2017) Resistance to Tomato leaf curl New Delhi virus in melon is controlled by a major QTL located in chromosome 11. Plant Cell Rep 36:1571–1584

    Article  Google Scholar 

  • Sarria-Villada E, Garzo E, López-Sesé AI, Fereres A, Gómez-Guillamón ML (2009) Hypersensitive response to Aphis gossypii Glover in melon genotypes carrying the Vat gene. J Exp Bot 60:3269–3277. https://doi.org/10.1093/jxb/erp163

    Article  CAS  Google Scholar 

  • Schoeny A, Desbiez C, Millot P, Wipf-Scheibel C, Nozeran K, Gognalons P, Lecoq H, Boissot N (2017) Impact of Vat resistance in melon on viral epidemics and genetic structure of virus populations. Virus Res 241:105–115

    Article  CAS  Google Scholar 

  • Sekhwal MK, Li P, Lam I, Wang X, Cloutier S, You FM (2015) Disease resistance gene analogs (RGAs) in plants. Int J Mol Sci 16:19248–19290. https://doi.org/10.3390/ijms160819248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sowell G, Demski JW (1981) Resistance to Watermelon mosaic virus in muskmelon. FAO Plant Prot Bull 29:71–73

    Google Scholar 

  • Tian G, Miao H, Yang Y, Zhou J, Lu H, Wang Y, Xie B, Zhang S, Gu X (2016) Genetic analysis and fine mapping of Watermelon mosaic virus resistance gene in cucumber. Mol Breed 36(131). https://doi.org/10.1007/s11032-016-0524-5

  • Van Ooijen JW (2009) MapQTL® 6 Software for the mapping of quantitative trait loci in experimental population of diploid species Kyazma BV, Wageningen

  • Venkatesh J, An J, Kang WH, Jahn M, Kang BC (2018) Fine mapping of the dominant potyvirus resistance gene Pvr7 reveals a relationship with Pvr4 in Capsicum annuum. Phytopathol 108:142–148

    Article  CAS  Google Scholar 

  • Wang S, Basten CJ, Zeng ZB (2012) Windows QTL cartographer 25 department of statistics, North Carolina State University, Raleigh, NC http://statgen.ncsu.edu/qtlcart/WQTLCart.htm Accessed 20 Feb 2018

  • Webb RE (1967) Cantaloupe breeding line B66-5: highly resistant to watermelon mosaic virus I. HortSci 2:58–59

    Google Scholar 

  • Yuste-Lisbona FJ, Capel C, Gómez-Guillamón ML, Capel J, López-Sesé AI, Lozano R (2011) Codominant PCR-based markers and candidate genes for powdery mildew resistance in melon (Cucumis melo L.). Theor Appl Genet 122:747–758

    Article  CAS  Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genet 136:1457–1468

    CAS  Google Scholar 

  • Zschiesche W, Barth O, Daniel K, Böhme S, Rausche J, Humbeck K (2015) The zinc binding nuclear protein HIPP3 acts as an upstream regulator of the salicylate-dependent plant immunity pathway and of flowering time in Arabidopsis thaliana. New Phytol 207:1084–1096

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank R. Camero, I. Díaz, E. Martínez, G. Perpiñá, M. López, V. Aragonés, and T. Cordero for their technical support in field assays.

Funding

This study was partially supported by the Spanish Ministerio de Economía y Competitividad grants AGL2014-53398-C2 (1-R and 2-R), by the Spanish Ministerio de Ciencia, Innovación y Universidades grants AGL2017-85563-C2 (1-R and 2-R) and BIO2017-83184-R, and by the PROMETEO project 2017/078 (to promote excellence groups) by the Conselleria d’Educació, Investigació, Cultura i Esports (Generalitat Valenciana).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Pérez-de-Castro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 127 kb)

ESM 2

(XLSX 13 kb)

ESM 3

(XLSX 16.9 kb)

ESM 4

(XLSX 412 kb)

ESM 5

(PDF 194 kb)

ESM 6

(XLSX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-de-Castro, A., Esteras, C., Alfaro-Fernández, A. et al. Fine mapping of wmv1551, a resistance gene to Watermelon mosaic virus in melon. Mol Breeding 39, 93 (2019). https://doi.org/10.1007/s11032-019-0998-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-019-0998-z

Keywords

Navigation