Skip to main content
Log in

Development and characterization of a co-dominant molecular marker via sequence analysis of a genomic region containing the Female (F) locus in cucumber (Cucumis sativus L.)

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Cucumber is a typical monoecious having separate male and female flowers on the same plant, and sex expression in cucumber is mainly determined by three major genes: F/f, M/m and A/a. Gynoecy plays an important role in cucumber hybrid breeding, and the use of gynoecious lines as maternal parents ensures high productivity. This study aimed to identify a co-dominant marker linked to Female (F) locus to distinguish homozygous and heterozygous gynoecious lines for efficient selection of gynoecy in cucumber breeding. Firstly, we analyzed a 50-kb genomic sequence of five gynoecious and five monoecious inbred lines to detect the polymorphism linked to F locus. A pair of specific primers, Cs-BCAT-F/Cs-BCAT-R, based on an In/Del polymorphism at 3′-UTR of branched-chain amino acid transaminase (BCAT) gene was designed to examine the polymorphism in gynoecious and monoecious parents, their F 1 hybrids and two F 2 segregating populations. The PCR fragments amplified with Cs-BCAT-F/Cs-BCAT-R co-segregated with sexual phenotypes in the F 2 populations, behaving as a co-dominant marker with two alleles: F (gynoecious) and f (monoecious). When we further verified the consistency of the co-dominant marker using additional 55 diverse inbred lines, it can explain ~90 % of accessions. Linkage analysis also showed that the gene which enhances the number of female flowers co-segregated with the co-dominant marker on the long arm of chromosome 6. This is the first report for the development of F locus-specific co-dominant marker which can distinguish perfectly homozygous and heterozygous gynoecious, and it could be used in marker-assisted selection in cucumber breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allard RW (1956) Formulas and tables to facilitate the calculation of recombination values in heredity. Hilgardia 24:235–278

    Article  Google Scholar 

  • Bu F, Chen H, Shi Q, Zhou Q, Gao D, Zhang Z, Huang S (2015) A major quantitative trait locus conferring subgynoecy in cucumber. Theor Appl Genet. doi:10.1007/s00122-015-2612-z

    PubMed  Google Scholar 

  • Chen H, Tian Y, Lu X, Liu X (2011) The inheritance of two novel subgynoecious genes in cucumber (Cucumis sativus L.). Sci Hortic (Amsterdam) 127:464–467

    Article  CAS  Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: Version II. Plant Mol Biol Rep 1:19–21

    Article  CAS  Google Scholar 

  • Diebold R, Schuster J, Daschner K, Binder S (2002) The branched-chain amino acid transaminase gene family in Arabidopsis encodes plastid and mitochondrial proteins. Plant Physiol 129:540–550

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fazio G, Staub JE, Chung SM (2002) Development and characterization of PCR markers in cucumber. J Am Soc Hortic Sci 127(4):545–557

    CAS  Google Scholar 

  • Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, Lucas WJ, Wang X, Xie B, Ni P (2009) The genome of the cucumber, Cucumis sativus L. Nat Genet 41:1275–1281

    Article  PubMed  CAS  Google Scholar 

  • Knopf RR, Trebitsh T (2006) The female-specific CsACS1G gene of cucumber. A case of gene duplication and recombination between the non-sex-specific 1-aminocyclopropane-1-carboxylate synthase gene and a branched chain amino acid transaminase gene. Plant Cell Physiol 47(9):1217–1228

    Article  PubMed  CAS  Google Scholar 

  • Kosambi D (1944) The estimation of map distance from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Kubicki B (1969) Investigation on sex determination in cucumber (Cucumis sativus L.). Genet Pol 10:69–86

    Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:178–181

    Article  Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Less H, Galili G (2008) Principal transcriptional programs regulating plant amino acid metabolism in response to abiotic stresses. Plant Physiol 147:316–330

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Malepszy S, Niemirowicz-Szczytt K (1991) Sex determination in cucumber (Cucumis sativus) as a model system for molecular biology. Plant Sci 80:39–47

    Article  Google Scholar 

  • Mibus H, Tatlioglu T (2004) Molecular characterization and isolation of the F/f gene for femaleness in cucumber (Cucumis sativus L.). Theor Appl Genet 109:1669–1676

    Article  PubMed  CAS  Google Scholar 

  • Perl-Treves R (1999) In sex determination in plants. In: Ainsworth C (ed) Male to female conversion along the cucumber shoot: approaches to studying sex genes and floral development in Cucumis sativus. Blackwell, London, pp 189–216

    Google Scholar 

  • Perl-Treves R, Rajagopalan PA (2006) Annual plant reviews volume 20: flowering and its manipulation. In: Ainsworth C (ed) Close, yet separate: patterns of male and female floral development in monoecious species. Blackwell, London, pp 117–146. doi:10.1002/9780470988602.ch6

    Google Scholar 

  • Pommerrenig B, Feussner K, Zierer W, Rabinovych V, Klebl F, Feussner I, Sauer N (2011) Phloem-specific expression of Yang cycle genes and identification of novel Yang cycle enzymes in Plantago and Arabidopsis. Plant Cell 23:1904–1919

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ren Y, Zhang Z, Liu J, Staub JE, Han Y, Cheng Z (2009) An integrated genetic and cytogenetic map of the cucumber genome. PLoS One 4(6):e5795. doi:10.1371/journal.pone.0005795

    Article  PubMed  PubMed Central  Google Scholar 

  • Schuster J, Binder S (2005) The mitochondrial branched-chain aminotransferase (AtBCAT-1) is capable to initiate degradation of leucine, isoleucine and valine in almost all tissues in Arabidopsis thaliana. Plant Mol Biol 57:241–254

    Article  PubMed  CAS  Google Scholar 

  • Shifriss O (1961) Sex control in cucumbers. J Hered 51:5–12

    Google Scholar 

  • Trebitsh T, Staub JE, O’Neill SD (1997) Identification of a 1-aminocyclopropane-1-carboxylic acid synthase gene linked to the Female (F) locus that enhances female sex expression in cucumber. Plant Physiol 113:987–995

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Woycicki R, Witkowicz J, Gawronski P, Dabrowska J, Lomsadze A (2011) The genome sequence of the North-European cucumber (Cucumis sativus L.) unravels evolutionary adaptation mechanisms in plants. PLoS One 6(7):e22728

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu T, Qin Z, Feng Z, Zhou X, Xin M, Du Y (2012) Functional analysis of the promoter of a female specific cucumber CsACS1G gene. Plant Mol Biol Rep 30:235–241. doi:10.1007/s11105-011-0318-1

    Article  CAS  Google Scholar 

  • Yan L (2012) Effect and regulation of ethylene in the biosynthesis of aroma volatiles in oriental sweet melon (Cucumis melo var. Maruwa Makino). Shenyang Agricultural University, China

    Google Scholar 

  • Yang XT, Song J, Fillmore S, Pang XQ, Zhang ZQ (2011) Effect of high temperature on color, chlorophyll fluorescence and volatile biosynthesis in green-ripe banana fruit. Postharvest Biol Technol 62:246–257

    Article  CAS  Google Scholar 

  • Zhang Z, Mao L, Chen H et al (2015) Genome-wide mapping of structural variations reveals a copy number variant that determines reproductive morphology in cucumber. Plant Cell. doi:10.1105/tpc.114.135848

    Google Scholar 

  • Zhou S, Zhang P, Zhu Y, Chen X, Chen L (2013) Identification of SSR marker linked to gynoecious loci in cucumber (Cucumis sativus L.). J Zhejiang Univ Agric Life Sci 39(3):291–298. doi:10.3785/j.issn.1008-9209.2012.11.141

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from Bio-industry Technology Development Program (111057-5) of iPET (Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanghyeob Lee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 474 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Win, K.T., Zhang, C., Song, K. et al. Development and characterization of a co-dominant molecular marker via sequence analysis of a genomic region containing the Female (F) locus in cucumber (Cucumis sativus L.). Mol Breeding 35, 229 (2015). https://doi.org/10.1007/s11032-015-0424-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-015-0424-0

Keywords

Navigation