Skip to main content

Advertisement

Log in

Identification of two functional markers associated with drought resistance in maize

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Drought is recognized as the major abiotic constraint to global food production. Molecular markers have become an important genetic tool for understanding genome dynamics and facilitating molecular breeding of drought resistance. Here, cleaved amplified polymorphic sequence (CAPS) markers dhnC397 and rspC1090 were identified based on the SNP A/G polymorphisms in the drought-resistance genes dhn1 and rsp41. The two alleles of both genes were easily and rapidly discriminated by polyacrylamide gel electrophoresis to reveal single nucleotide polymorphisms (SNPs) as functional markers. By validation of an integrated selection criterion for drought resistance, the average SI (selection index for drought resistance) of lines with superior drought-resistance genotypes was higher than those with opposite, less drought-resistant genotypes, and the SI of heterotic group B was higher than that of heterotic group A for both genes. Integrating the results of CAPS analysis and evaluation of drought resistance indicated that the SNPs in these two genes partly participate in conferring drought resistance in these maize lines of interest. Breeders can thus use the CAPS markers identified here as functional markers for the improvement of drought resistance in these maize lines and possibly others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abea F, Saitob K, Miurac K, Toriyamaa K (2002) A single nucleotide polymorphism in the alternative oxidase gene among rice varieties differing in low temperature resistance. FEBS Lett 527:181–185

    Article  Google Scholar 

  • Allagulova ChR, Gimalov FR, Shakirova FM, Vakhitov VA (2003) The plant dehydrins: structure and putative functions. Biochemistry 68:945–951

    CAS  PubMed  Google Scholar 

  • Andersen JR, Lübberstedt T (2003) Functional markers in plants. Trends Plant Sci 8:554–560

    Article  CAS  PubMed  Google Scholar 

  • Ansorge WJ (2009) Next-generation DNA sequencing techniques. N Biotechnol 25:195–203

    Article  CAS  PubMed  Google Scholar 

  • Appleby N, Edwards D, Batley J (2009) New technologies for ultra-high throughput genotyping in plants. Methods Mol Biol 513:19–39

    Article  CAS  PubMed  Google Scholar 

  • Babu R, Rojas NP, Gao S, Yan J, Pixley K (2013) Validation of the effects of molecular marker polymorphisms in LcyE and CrtRB1 on provitamin A concentrations for 26 tropical maize populations. Theor Appl Genet 126:389–399

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bang H, Kim S, Leskovar D, King S (2007) Development of a codominant CAPS marker for allelic selection between canary yellow and red watermelon based on SNP in lycopene b-cyclase (LCYB) gene. Mol Breed 20:63–72

    Article  CAS  Google Scholar 

  • Boomsma CR, Vyn TJ (2008) Maize drought resistance: potential improvements through arbuscular mycorrhizal symbiosis? Field Crops Res 108:14–31

    Article  Google Scholar 

  • Edmeades G, Bänziger M, Campos H, Schussler J (2006) Improving resistance to abiotic stresses in staple crops: a random or planned process? In: Lamkey KR, Lee M (eds) Plant breeding: the Arnel R. Hallauer international symposium. Blackwell, Ames, pp 293–309

    Google Scholar 

  • FAOSTAT (2010) Statistical database of the Food and Agriculture Organization of the United Nations. FAO, Rome. http://faostat.fao.org. Accessed July 14 2011

  • Flint-Garcia SA, Thuiller AC, Yu J, Pressoir G, Romero SM, Mitchell SE, Doebley J, Kresovich S, Goodman MM, Buckler ES (2005) Maize association population: a high-resolution platform for quantitative trait locus dissection. Plant J 44:1054–1064

    Article  CAS  PubMed  Google Scholar 

  • Foley J (2011) Can we feed the world and sustain the planet? Sci Am 305:60–65

  • Gut I (2001) Automation in genotyping of single nucleotide polymorphisms. Hum Mutat 17:475–492

    Article  CAS  PubMed  Google Scholar 

  • Hao G, Zhang X, Wang Y, Wu Z, Huang C (2009) Nucleotide variation in the NCED3 region of Arabidopsis thaliana and its association study with abscisic acid content under drought stress. J Integr Plant Biol 51:175–183

    Article  CAS  PubMed  Google Scholar 

  • Hao Z, Li X, Su Z, Xie C, Li M, Liang X, Weng J, Zhang D, Li L, Zhang S (2011a) A proposed selection criterion for drought resistance across multiple environments in maize. Breed Sci 61:101–108

    Article  Google Scholar 

  • Hao Z, Li X, Xie C, Weng J, Li M, Zhang D, Liang X, Liu L, Liu S, Zhang S (2011b) Identification of functional genetic variations underlying drought resistance in maize using SNP markers. J Integr Plant Biol 53:641–652

    Article  PubMed  Google Scholar 

  • Harjes CE, Rocheford TR, Bai L, Brutnell TP, Kandianis CB, Sowinski SG, Stapleton AE, Vallabhaneni R, Williams M, Wurtzel ET, Yan J, Buckler ES (2008) Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science 319:330–333

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Iyer-Pascuzzi AS, McCouch SR (2007) Functional markers for xa5-mediated resistance in rice (Oryza sativa L.). Mol Breed 19:291–296

    Article  CAS  Google Scholar 

  • Kim S, Ruparel HD, Gilliam TC, Ju J (2003) Digital genotyping using molecular affinity and mass spectrometry. Nat Rev Genet 4:1001–1008

    Article  CAS  PubMed  Google Scholar 

  • Koag MC, Wilkens S, Fenton RD, Resnik J, Vo E, Close TJ (2009) The K-segment of maize DHN1 mediates binding to anionic phospholipid vesicles and concomitant structural changes. Plant Physiol 150:1503–1514

  • Korbie DJ, Mattick JS (2008) Touchdown PCR for increased specificity and sensitivity in PCR amplification. Nat Protoc 3:1452–1456

    Article  CAS  PubMed  Google Scholar 

  • Lübberstedt T, Zein I, Andersen JR, Wenzel G, Krützfeldt B, Eder J, Ouzunova M, Chun S (2005) Development and application of functional markers in maize. Euphytica 146:101–108

    Article  Google Scholar 

  • Manley JL, Krainer AR (2010) A rational nomenclature for serine/arginine-rich protein splicing factors (SR proteins). Genes Dev 24:1073–1074

  • Michaels SD, Amasino RM (1998) A robust method for detecting single-nucleotide changes as polymorphic markers by PCR. Plant J 14:381–385

    Article  CAS  PubMed  Google Scholar 

  • Neff MM, Neff JD, Chory J, Pepper AE (1998) dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: experimental applications in Arabidopsis thaliana genetics. Plant J 14:387–392

    Article  CAS  PubMed  Google Scholar 

  • Palusa SG, Ali GS, Reddy AS (2007) Alternative splicing of pre-mRNAs of Arabidopsis serine/arginine-rich proteins: regulation by hormones and stresses. Plant J 49:1091–1107

    Article  CAS  PubMed  Google Scholar 

  • Rafalski A (2002) Applications of single nucleotide polymorphism in crop genetics. Curr Opin Plant Biol 5:94–100

    Article  CAS  PubMed  Google Scholar 

  • Ragoussis J (2009) Genotyping technologies for genetic research. Annu Rev Genomics Hum G 10:117–133

    Article  CAS  Google Scholar 

  • Ribaut JM, Betran J, Monneveux P, Setter T (2008) Drought resistance in maize. In: Bennetzen J, Hake SC (eds) Handbook of maize: its biology. Springer, Amsterdam, pp 311–344

    Google Scholar 

  • Rorat T (2006) Plant dehydrins: tissue location, structure and function. Cell Mol Biol Lett 11:536–556

    Article  CAS  PubMed  Google Scholar 

  • Sun D, He Z, Xia X, Zhang L, Morris C, Appels R, Ma W, Wang H (2005) A novel STS marker for polyphenol oxidase activities in bread wheat. Mol Breed 16:209–218

    Article  CAS  Google Scholar 

  • Tanaka M, Takahata Y, Nakayama H, Yoshinaga M, Kumagai T, Nakatani M (2010) Development of cleaved amplified polymorphic sequence (CAPS)-based markers for identification of sweetpotato cultivars. Sci Hortic 123:436–442

    Article  CAS  Google Scholar 

  • Tuberosa R, Salvi S (2006) Genomics-based approaches to improve drought resistance of crops. Trends Plant Sci 11:405–412

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK (2010) Gene-based marker systems in plants: high throughput approaches for discovery and genotyping. In: Jain SM, Brar DS (eds) Molecular techniques in crop improvement. Springer, Amsterdam, pp 119–142

    Chapter  Google Scholar 

  • Varshney RK, Graner A, Sorrells ME (2005) Genomics-assisted breeding for crop improvement. Trends Plant Sci 10:621–630

    Article  CAS  PubMed  Google Scholar 

  • Wen W, Guo T, Tovar VHC, Li H, Yan J, Taba S (2012) The strategy and potential utilization of temperate germplasm for tropical germplasm improvement: a case study of maize (Zea mays L.). Mol Breed 29:951–962

    Article  CAS  Google Scholar 

  • Xu Y, Skinner DJ, Wu H, Palacios-Rojas N, Araus JL, Yan J, Gao S, Warburton ML, Crouch JH (2009) Advances in maize genomics and their value for enhancing genetic gains from breeding. Int J Plant Genomics 2009:957602. doi:10.1155/2009/957602

    PubMed Central  PubMed  Google Scholar 

  • Xu Y, Lu Y, Xie C, Gao S, Wan J, Prasanna BM (2012) Whole-genome strategies for marker-assisted plant breeding. Mol Breed 29:1–22

    Article  Google Scholar 

  • Xue Y, Warburton ML, Sawkins M, Zhang X, Setter T, Xu Y, Grudloyma P, Gethi J, Ribaut JM, Li W, Zhang X, Zheng Y, Yan J (2013) Genome-wide association analysis for nine agronomic traits in maize under well-watered and water-stressed conditions. Theor Appl Genet 126:2587–2596

    Article  CAS  PubMed  Google Scholar 

  • Yan J, Shah T, Warburton ML, Buckler ES, McMullen MD, Crouch J (2009) Genetic characterization and linkage disequilibrium estimation of a global maize collection using SNP markers. PLoS ONE 4:e8451

    Article  PubMed Central  PubMed  Google Scholar 

  • Yan J, Kandianis CB, Harjes CE, Bai L, Kim EH, Yang X, Skinner DJ, Fu Z, Mitchell S, Li Q, Fernandez MG, Zaharieva M, Babu R, Fu Y, Palacios N, Li J, DellaPenna D, Brutnell T, Buckler ES, Warburton ML, Rocheford T (2010) Rare genetic variation at Zea mays crtRB1 increases β-carotene in maize grain. Nat Genet 42:322–327

    Article  CAS  PubMed  Google Scholar 

  • Yan JB, Warburton M, Crouch J (2011) Association mapping for enhancing maize (Zea mays L.) genetic improvement. Crop Sci 51:433–449

    Article  Google Scholar 

  • Yanagisawa T, Kiribuchi-Otobe C, Hirano H, Suzuki Y, Fujita M (2003) Detection of single nucleotide polymorphism (SNP) controlling the waxy character in wheat by using a derived cleaved amplified polymorphic sequence (dCAPS) marker. Theor Appl Genet 107:84–88

    CAS  PubMed  Google Scholar 

  • Yu J, Holland JB, McMullen MD, Buckler ES (2008) Genetic design and statistical power of nested association mapping in maize. Genetics 178:539–551

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We send our acknowledgments to Prof. Thomas Lübberstedt of Iowa State University for his kind editing on this paper. The research was supported by the National High Technology Research and Development Program (2011AA100501) and the National Natural Science Foundation of China (31271735).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhuanfang Hao or Xinhai Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 328 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Hao, Z., Weng, J. et al. Identification of two functional markers associated with drought resistance in maize. Mol Breeding 35, 53 (2015). https://doi.org/10.1007/s11032-015-0231-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-015-0231-7

Keywords

Navigation