Skip to main content
Log in

Combination of seedling and adult plant resistance to leaf scald for stable resistance in barley

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Rhynchosporium secalis can overcome a single resistance gene of barley in a relatively short period of time. Novel genes and quantitative trait locis (QTLs) are therefore vital to control scald in barley. A population of 220 double haploid lines was developed from a cross of Vlamingh and WABAR2147, where Vlamingh showed adult plant resistance (APR) and WABAR2147 showed seedling resistance to a group of isolates. The population was tested for APR to scald under natural infection in two consecutive seasons in addition to a seedling screen with three isolates. One single gene was mapped to chromosome 6H based on the seedling test, and two QTLs (QSc.VlWa.4H and QSc.VlWa.6H) were mapped to chromosomes 4H and 6H based on APR. Epistatic interaction was observed between the two QTLs, and environment/QTL interaction was only observed for QSc.VlWa.6H which co-segregated with the seedling resistance gene and contributed to basal resistance against scald during whole growth stages. QSc.VlWa.4H explained 42.5 and 57.8 % of the phenotypic variation in the two independent trials when the effect of QSc.VlWa.6H was excluded from the analysis. We developed a high-density consensus genetic map with 7,876 molecular makers and anchored 43 QTLs and 7 genes for scald resistance from different mapping populations. No known QTLs or genes were reported in a similar position to QSc.VlWa.4H, and it was the first major QTL for APR of scald on chromosome 4HS in barley. Combination of the two QTLs achieved better and stable scald resistance across four different environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbott DC, Brown AHD, Burdon JJ (1992) Genes for scald resistance from wild barley (Hordeum vulgare ssp spontaneum) and their linkage to isozyme markers. Euphytica 61:225–231

    CAS  Google Scholar 

  • Abbott DC, Lagudah ES, Brown AHD (1995) Identification of RFLPS flanking a scald resistance gene on barley chromosome-6. J Hered 86:152–154

    CAS  PubMed  Google Scholar 

  • Aghnoum R, Marcel TC, Johrde A, Pecchioni N, Schweizer P, Niks RE (2010) Basal host resistance of barley to powdery mildew: connecting quantitative trait loci and candidate genes. Mol Plant-Microbe Interact 23:91–102

  • Backes G, Graner A, Foroughiwehr B, Fischbeck G, Wenzel G, Jahoor A (1995) Localization of quantitative trait loci (QTL) for agronomic important characters by the use of a RFLP map in barley (Hordeum vulgare L). Theor Appl Genet 90:294–302

    CAS  PubMed  Google Scholar 

  • Bjornstad A, Patil V, Tekauz A, Maroy AG, Skinnes H, Jensen A, Magnus H, MacKey J (2002) Resistance to scald (Rhynchosporium secalis) in barley (Hordeum vulgare L.) studied by near-isogenic lines: I. Markers and differential isolates. Phytopathology 92:710–720

    CAS  PubMed  Google Scholar 

  • Bjornstad A, Gronnerod S, Key JM, Tekauz A, Crossa J, Martens H (2004) Resistance to barley scald (Rhynchosporium secalis) in the Ethiopian donor lines ‘Steudelli’ and ‘Jet’, analyzed by partial least squares regression and interval mapping. Hereditas 141:166–179

    CAS  PubMed  Google Scholar 

  • Cheong J, Williams K, Wallwork H (2006) The identification of QTLs for adult plant resistance to leaf scald in barley. Aust J Agric Res 57:961–965

    CAS  Google Scholar 

  • Close TJ, Bhat PR, Lonardi S, Wu Y, Rostoks N, Ramsay L, Druka A, Stein N, Svensson JT, Wanamaker S, Bozdag S, Roose ML, Moscou MJ, Chao S, Varshney RK, Szuecs P, Sato K, Hayes PM, Matthews DE, Kleinhofs A, Muehlbauer GJ, DeYoung J, Marshall DF, Madishetty K, Fenton RD, Condamine P, Graner A, Waugh R (2009) Development and implementation of high-throughput SNP genotyping in barley. BMC Genom 10:582

    Google Scholar 

  • Cselenyi L, Ordon F, Friedt W (1998) Inheritance of resistance to Rhynchosporium secalis in spring barley (Hordeum vulgare L.). Plant Breed 117:23–26

    Google Scholar 

  • Garvin DF, Brown AHD, Burdon JJ (1997) Inheritance and chromosome locations of scald-resistance genes derived from Iranian and Turkish wild barleys. Theor Appl Genet 94:1086–1091

    CAS  Google Scholar 

  • Garvin DF, Brown AHD, Raman H, Read BJ (2000) Genetic mapping of the barley Rrs14 scald resistance gene with RFLP, isozyme and seed storage protein markers. Plant Breed 119:193–196

    CAS  Google Scholar 

  • Genger RK, Brown AHD, Knogge W, Nesbitt K, Burdon JJ (2003a) Development of SCAR markers linked to a scald resistance gene derived from wild barley. Euphytica 134:149–159

    CAS  Google Scholar 

  • Genger RK, Williams KJ, Raman H, Read BJ, Wallwork H, Burdon JJ, Brown AHD (2003b) Leaf scald resistance genes in Hordeum vulgare and Hordeum vulgare ssp spontaneum: parallels between cultivated and wild barley. Aust J Agric Res 54:1335–1342

    CAS  Google Scholar 

  • Genger RK, Nesbitt K, Brown AHD, Abbott DC, Burdon JJ (2005) A novel barley scald resistance gene: genetic mapping of the Rrs15 scald resistance gene derived from wild barley, Hordeum vulgare ssp spontaneum. Plant Breed 124:137–141

    CAS  Google Scholar 

  • Goodwin SB, Maroof MAS, Allard RW, Webster RK (1993) Isozyme variation within and among populations of Rhynchosporium secalis in Europe, Australia and the United States. Mycol Res 97:49–58

    CAS  Google Scholar 

  • Graner A, Tekauz A (1996) RFLP mapping in barely of a dominant gene conferring resistance to scald (Rhynchosporium secalis). Theor Appl Genet 93:421–425

    CAS  PubMed  Google Scholar 

  • Gronnerod S, Maroy AG, MacKey J, Tekauz A, Penner GA, Bjornstad A (2002) Genetic analysis of resistance to barley scald (Rhynchosporium secalis) in the Ethiopian line ‘Abyssinian’ (CI668). Euphytica 126:235–250

    CAS  Google Scholar 

  • Hearnden PR, Eckermann PJ, McMichael GL, Hayden MJ, Eglinton JK, Chalmers KJ (2007) A genetic map of 1,000 SSR and DArT markers in a wide barley cross. Theor Appl Genet 115:383–391

    CAS  PubMed  Google Scholar 

  • Jackson BN, Aluru S, Schnable PS (2005) Consensus genetic maps: a graph theoretic approach. In: 2005 IEEE computational systems bioinformatics, Washington DC, USA, pp 35–43

  • Jackson BN, Schnable PS, Aluru S (2008) Consensus genetic maps as median orders from inconsistent sources. IEEE ACM Trans Comput Biol Bioinform 5:161–171

    CAS  Google Scholar 

  • Jensen J, Backes G, Skinnes H, Giese H (2002) Quantitative trait loci for scald resistance in barley localized by a non-interval mapping procedure. Plant Breed 121:124–128

    CAS  Google Scholar 

  • Juskiw PE, Zantinge J, Xi K (2008) Scald resistance and malting quality relationships in Canadian two row barleys. In: 10th international barley genetics symposium, Bibliotheca Alexandrina, Egypt, pp 339–344

  • Li HB, Zhou MX (2011) Quantitative trait loci controlling barley powdery mildew and scald resistances in two different barley doubled haploid populations. Mol Breed 27:479–490

    Google Scholar 

  • Munoz-Amatriain M, Moscou MJ, Bhat PR, Svensson JT, Bartos J, Suchankova P, Simkova H, Endo TR, Fenton RD, Lonardi S, Castillo AM, Chao S, Cistue L, Cuesta-Marcos A, Forrest KL, Hayden MJ, Hayes PM, Horsley RD, Makoto K, Moody D, Sato K, Valles MP, Wulff BBH, Muehlbauer GJ, Dolezel J, Close TJ (2011) An improved consensus linkage map of barley based on flow-sorted chromosomes and single nucleotide polymorphism markers. Plant Genome 4:238–249

  • Nelson RR (1978) Genetics of horizontal resistance to plant Dis. Annu Rev Phytopathol 16:359–378

    Google Scholar 

  • Newton AC, Searle J, Guy DC, Hackett CA, Cooke DEL (2001) Variability in pathotype, aggressiveness, RAPD profile, and rDNA ITS1 sequences of UK isolates of Rhynchosporium secalis. Zeitschrift Fur Pflanzenkrankheiten Und Pflanzenschutz (J Plant Dis Prot) 108:446–458

    CAS  Google Scholar 

  • Oxley SJP (2003) Management of Rhynchosporium in different barley varieties and cropping systems. Home Grown Cereals Authority, London

    Google Scholar 

  • Patil V, Bjornstad A, Mackey J (2003) Molecular mapping of a new gene Rrs4(CI11549) for resistance to barley scald (Rhynchosporium secalis). Mol Breed 12:169–183

    CAS  Google Scholar 

  • Pickering R, Ruge-Wehling B, Johnston PA, Schweizer G, Ackermann P, Wehling P (2006) The transfer of a gene conferring resistance to scald (Rhynchosporium secalis) from Hordeum bulbosum into H-vulgare chromosome 4HS. Plant Breed 125:576–579

    CAS  Google Scholar 

  • Saari EE, Prescott JM (1975) A scale for appraising the foliar intensity of wheat diseases. Plant Dis Report 59:377–380

    Google Scholar 

  • Sato K, Close TJ, Bhat P, Munoz-Amatriain M, Muehlbauer GJ (2011) Single nucleotide polymorphism mapping and alignment of recombinant chromosome substitution lines in barley. Plant Cell Physiol 52:728–737

    CAS  PubMed  Google Scholar 

  • Sayed H, Backes G, Kayyal H, Yahyaoui A, Ceccarelli S, Grando S, Jahoor A, Baum M (2004) New molecular markers linked to qualitative and quantitative powdery mildew and scald resistance genes in barley for dry areas. Euphytica 135:225–228

    CAS  Google Scholar 

  • Schweizer GF, Baumer M, Daniel G, Rugel H, Roder MS (1995) RFLP markers linked to scald (Rhynchosporium secalis) resistance gene RH2 in barley. Theor Appl Genet 90:920–924

    CAS  PubMed  Google Scholar 

  • Schweizer GF, Herz M, Mikolajewski S, Brenner M, Hartl L, Baumer M (2004) Genetic mapping of a novel scald resistance gene Rrs15CI8288 in barley. In: 9th international barley genetics symposium, Czech Republic, pp 258–265

  • Shipton WA, Boyd WJR, Ali SM (1974) Scald of barley. Rev Plant Pathol 53:840–861

    Google Scholar 

  • Shtaya MJY, Marcel TC, Sillero JC, Niks RE, Rubiales D (2006) Identification of QTLs for powdery mildew and scald resistance in barley. Euphytica 151:421–429

    Google Scholar 

  • Spaner D, Shugar LP, Choo TM, Falak I, Briggs KG, Legge WG, Falk DE, Ullrich SE, Tinker NA, Steffenson BJ, Mather DE (1998) Mapping of disease resistance loci in barley on the basis of visual assessment of naturally occurring symptoms. Crop Sci 38:843–850

    Google Scholar 

  • Szucs P, Blake VC, Bhat PR, Chao S, Close TJ, Cuesta-Marcos A, Muehlbauer GJ, Ramsay L, Waugh R, Hayes PM (2009) An integrated resource for barley linkage map and malting quality QTL alignment. Plant Genome 2:134–140

    CAS  Google Scholar 

  • Van Ooijen JW (2004) MapQTL 5, software for the mapping of quantitative trait loci in experimental populations. Kyazma B.V., Wageningen

    Google Scholar 

  • Van Ooijen JW (2011) Multipoint maximum likelihood mapping in a full-sib family of an outbreeding species. Genet Res 93:343–349

    Google Scholar 

  • Varshney RK, Marcel TC, Ramsay L, Russell J, Roeder MS, Stein N, Waugh R, Langridge P, Niks RE, Graner A (2007) A high density barley microsatellite consensus map with 775 SSR loci. Theor Appl Genet 114:1091–1103

    CAS  PubMed  Google Scholar 

  • von Korff M, Wang H, Leon J, Pillen K (2005) AB-QTL analysis in spring barley. I. Detection of resistance genes against powdery mildew, leaf rust and scald introgressed from wild barley. Theor Appl Genet 111:583–590

    Google Scholar 

  • Wagner C, Schweizer G, Kraemer M, Dehmer-Badani AG, Ordon F, Friedt W (2008) The complex quantitative barley-Rhynchosporium secalis interaction: newly identified QTL may represent already known resistance genes. Theor Appl Genet 118:113–122

    CAS  PubMed  Google Scholar 

  • Wallwork H, Grcic M (2011) The use of differential isolates of Rhynchosporium secalis to identify resistance to leaf scald in barley. Australas Plant Pathol 40:490–496

    Google Scholar 

  • Wenzl P, Li H, Carling J, Zhou M, Raman H, Paul E, Hearnden P, Maier C, Xia L, Caig V, Ovesna J, Cakir M, Poulsen D, Wang J, Raman R, Smith KP, Muehlbauer GJ, Chalmers KJ, Kleinhofs A, Huttner E, Kilian A (2006) A high-density consensus map of barley linking DArT markers to SSR, RFLP and STS loci and agricultural traits. BMC Genomics 7:206

    PubMed Central  PubMed  Google Scholar 

  • Wu YH, Bhat PR, Close TJ, Lonardi S (2007) Efficient and accurate construction of genetic linkage maps from noisy and missing genotyping. In: 7th international workshop on algorithms in bioinformatics, PA, USA, pp 395–406

  • Wu YH, Close TJ, Lonardi S (2008a) On the accurate construction of consensus genetic maps. In: computational systems bioinformatics conference, CA, USA, pp 285–296

  • Wu YH, Bhat PR, Close TJ, Lonardi S (2008b) Efficient and accurate construction of genetic linkage maps from the minimum spanning tree of a graph. Plos Genet 4(4):e1000212

  • Wu YH, Close TJ, Lonardi S (2011) Accurate construction of consensus genetic maps via integer linear programming. IEEE ACM Trans Comput Biol Bioinformatics 8:381–394

    Google Scholar 

  • Yap IV, Schneider D, Kleinberg J, Matthews D, Cartinhour S, McCouch SR (2003) A graph-theoretic approach to comparing and integrating genetic, physical and sequence-based maps. Genetics 165:2235–2247

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yun SJ, Gyenis L, Hayes PM, Matus I, Smith KP, Steffenson BJ, Muehlbauer GJ (2005) Quantitative trait loci for multiple disease resistance in wild barley. Crop Sci 45:2563–2572

    CAS  Google Scholar 

  • Zaffarano PL, McDonald BA, Zala M, Linde CC (2006) Global hierarchical gene diversity analysis suggests the Fertile Crescent is not the center of origin of the barley scald pathogen Rhynchosporium secalis. Phytopathology 96:941–950

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project is supported by the Australian Grain Research and Development Corporation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoli Shu or Chengdao Li.

Additional information

Sanjiv Gupta contributed equally as the first author.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 101 kb)

Supplementary material 2 (XLS 519 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Gupta, S., Wallwork, H. et al. Combination of seedling and adult plant resistance to leaf scald for stable resistance in barley. Mol Breeding 34, 2081–2089 (2014). https://doi.org/10.1007/s11032-014-0164-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-014-0164-6

Keywords

Navigation