Skip to main content
Log in

Molecular characterization and genetic diversity of the starch branching enzyme (SBE) gene from Amaranthus: the evolutionary origin of grain amaranths

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Full-length genomic DNA clones encoding starch branching enzymes (SBEs) from three cultivated grain amaranths were isolated and characterized. A sequence analysis showed that the SBE genes from Amaranthus caudatus, A. cruentus, and A. hypochondriacus, viz. SBE-ca, SBE-cr, and SBE-hy, respectively, contained the same exon and intron structure and consisted of 961 amino acids with molecular weights of approximately 108.4 kDa. The lengths of the genes were 7,446 (SBE-ca), 7,453 (SBE-cr), and 7,443 bp (SBE-hy), and they are highly homologous. We also tested, for the first time, the potential use of SBE from diverse genetic sources to answer long-standing questions on the origin of grain amaranths. The maximum parsimony tree based on the SBE sequence data suggests that A. hybridus is the progenitor wild species of grain amaranths. The results could be summarized as follows: (1) the A. hybridus species comprise all grain amaranths, which can then be divided into two subgroups; (2) A. caudatus and A. hypochondriacus and/or A. caudatus and A. quitensis appear to be closely related to each other; (3) A. powellii was the most distantly related to the other five species in the A. hybridus complex. These results indicate that A. hybridus is the ancestor species in at least two separate domestication events, lending support to the theory of three separate, rather than one, domestication events involving A. hybridus as the common ancestor. A new approach to investigating the genetic diversity in Amaranthus using the nuclear gene SBE provided useful information on the evolutionary origin of three cultivated species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aldrich P, Doebley J, Schertz K, Stec A (1992) Patterns of allozyme variation in cultivated and wild Sorghum bicolor. Theor Appl Genet 85:451–460

    Article  CAS  PubMed  Google Scholar 

  • Bailey C, Doyle J (1999) Potential phylogenetic utility of the low-copy nuclear gene pistillata in dicotyledonous plants: comparison to nrDNA ITS and trnL intron in Sphaerocardamum and other Brassicaceae. Mol Phylogenet Evol 13:20–30

    Article  CAS  PubMed  Google Scholar 

  • Breathnach R, Chambon P (1981) Organization and expression of eucaryotic split genes coding for proteins. Annu Rev Biochem 50:349–383

    Article  CAS  PubMed  Google Scholar 

  • Campbell WH, Gowri G (1990) Codon usage in higher plants, green algae, and cyanobacteria. Plant Physiol 92:1–11

  • Chan K, Sun M (1997) Genetic diversity and relationships detected by isozyme and RAPD analysis of crop and wild species of Amaranthus. Theor Appl Genet 95:865–873

  • Costea M, Sanders A, Waines G (2001) Preliminary results toward a revision of the Amaranthus hybridus species complex (Amaranthaceae). SIDA 19:931–974

    Google Scholar 

  • Costea M, Brenner D, Tardif F, Tan Y, Sun M (2006) Delimitation of Amaranthus cruentus L. and Amaranthus caudatus L. using micromorphology and AFLP analysis: an application in germplasm identification. Genet Resour Crop Evol 53:1625–1633

    Article  Google Scholar 

  • Das S (2012) Systematics and taxonomic delimitation of vegetable, grain and weed amaranths: a morphological and biochemical approach. Genet Resour Crop Evol 59:289–303

    Article  Google Scholar 

  • Emshwiller E, Doyle J (1999) Chloroplast-expressed glutamine synthetase (ncpGS): potential utility for phylogenetic studies with an example from Oxalis (Oxalidaceae). Mol Phylogenet Evol 12:310–319

    Article  CAS  PubMed  Google Scholar 

  • Gupta V, Gudu S (1991) Interspecific hybrids and possible phylogenetic relations in grain amaranths. Euphytica 52:33–38

    Google Scholar 

  • Han Y, Gasic K, Sun F, Xu M, Korban S (2007) A gene encoding starch branching enzyme I (SBEI) in apple (Malus x domestica, Rosaceae) and its phylogenetic relationship to Sbe genes from other angiosperms. Mol Phylogenet Evol 43:852–863

    Article  CAS  PubMed  Google Scholar 

  • Hauptli H, Jain S (1984) Allozyme variation and evolutionary relationships of grain amaranths (Amaranthus spp.). Theor Appl Genet 69:153–165

    CAS  PubMed  Google Scholar 

  • Kawasaki T, Hayashida N, Baba T, Shinozaki K, Shimada H (1993) The gene encoding a calcium-dependent protein kinase located near the sbe1 gene encoding starch branching enzyme I is specifically expressed in developing rice seeds. Gene 129:183

    Article  CAS  PubMed  Google Scholar 

  • Kietlinski KD, Jimenez F, Jellen EN, Maughan PJ, Smith SM, Pratt DB (2014) Relationships between the weed Amaranthus hybridus (Amaranthaceae) and the grain amaranths. Crop Sci 54:220–228

    Article  Google Scholar 

  • Kim K-N, Fisher DK, Gao M, Guiltinan MJ (1998) Genomic organization and promoter activity of the maize starch branching enzyme I gene. Gene 216:233–243

    Article  CAS  PubMed  Google Scholar 

  • Lanoue K, Wolf P, Browning S, Hood E (1996) Phylogenetic analysis of restriction-site variation in wild and cultivated Amaranthus species (Amaranthaceae). Theor Appl Genet 93:722–732

    Article  CAS  PubMed  Google Scholar 

  • Lewis C, Doyle J (2001) Phylogenetic utility of the nuclear gene malate synthase in the palm family (Arecaceae). Mol Phylogenet Evol 19:409–420

    Article  CAS  PubMed  Google Scholar 

  • Lu B (2006) Isolation, characterization, and expression analysis of genes encoding starch synthesizing enzymes from grain amaranth. PhD thesis, University of Hong Kong, Hong Kong

  • Mason-Gamer RJ, Weil CF, Kellogg EA (1998) Granule-bound starch synthase: structure, function, and phylogenetic utility. Mol Biol Evol 15:1658–1673

    Article  CAS  PubMed  Google Scholar 

  • Murray M, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4326

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ohnishi O, Asano N (1999) Genetic diversity of Fagopyrum homotropicum, a wild species related to common buckwheat. Genet Resour Crop Evol 46:389–398

    Article  Google Scholar 

  • Pal M, Khoshoo TN (1974) Grain amaranths. In: Hutchinson JB (ed) Evolutionary studies in world crops: diversity and change in the Indian subcontinent. Cambridge University Press, UK, pp 129–137

  • Peralta IE, Spooner DM (2001) Granule-bound starch synthase (GBSSI) gene phylogeny of wild tomatoes (Solanum L. section Lycopersicon [Mill.] Wettst. subsection Lycopersicon). Am J Bot 88:1888–1902

    Article  CAS  PubMed  Google Scholar 

  • Rahman S, Li Z, Abrahams S, Abbott D, Appels R, Morell M (1999) Characterisation of a gene encoding wheat endosperm starch branching enzyme-I. Theor Appl Genet 98(1):156–163

    Article  CAS  Google Scholar 

  • Ray T, Roy SC (2009) Genetic diversity of Amaranthus species from the Indo-Gangetic Plains revealed by RAPD analysis leading to the development of ecotype-specific SCAR marker. J Hered 100:338–347

    Article  CAS  PubMed  Google Scholar 

  • Sauer JD (1967) The grain amaranths and their relatives: a revised taxonomic and geographic survey. Ann Mo Bot Gard 54:103–137

    Article  Google Scholar 

  • Saunders R, Becker R (1984) Amaranthus: a potential food and feed resource. Adv Cereal Sci Technol 6:357–396

    CAS  Google Scholar 

  • Smith AM, Denyer K, Martin C (1997) The synthesis of the starch granule. Annu Rev Plant Physiol Plant Mol Biol 48:67–87

    Article  CAS  PubMed  Google Scholar 

  • Swofford D (1988) PAUP*: phylogenetic analysis using parsi- mony and other methods, version 4.0 (test ver. 61–64). Sinauer Associates Publishers, Sunderland

  • Transue D, Fairbanks D, Robison L, Andersen W (1994) Species identification by RAPD analysis of grain amaranth genetic resources. Crop Sci 34:1385–1389

    Article  Google Scholar 

  • Xu F, Sun M (2001) Comparative analysis of phylogenetic relationships of grain amaranths and their wild relatives (Amaranthus; Amaranthaceae) using internal transcribed spacer, amplified fragment length polymorphism, and double-primer fluorescent intersimple sequence repeat markers. Mol Phylogenet Evol 21(3):372–387

    Article  CAS  PubMed  Google Scholar 

  • Zheleznov AV, Solonenko LP, Zheleznova NB (1997) Seed proteins of the wild and the cultivated Amaranthus species. Euphytica 97(2):177–182

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiro Nemoto.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 48 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, YJ., Nishikawa, T., Matsushima, K. et al. Molecular characterization and genetic diversity of the starch branching enzyme (SBE) gene from Amaranthus: the evolutionary origin of grain amaranths. Mol Breeding 34, 1975–1985 (2014). https://doi.org/10.1007/s11032-014-0156-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-014-0156-6

Keywords

Navigation