Skip to main content
Log in

Design, synthesis and biological evaluation of MNK-PROTACs

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Mitogen-activated protein kinase (MAPK)-interacting kinases (MNKs) can regulate cellular mRNA translation by controlling the phosphorylation of the eukaryotic translation initiation factor 4E (eIF4E), which plays an important role in tumor initiation, development, and metastasis. Although small-molecule MNK inhibitors have made significant breakthroughs in the treatment of various malignancies, their clinical application can be limited by drug resistance, target selectivity and other factors. The strategy of MNK-PROTACs which selectively degrades MNK kinases provides a new approach for developing small-molecule drugs for related diseases. In this study, DS33059, a small-molecule compound modified based on the ongoing clinical trials drug ETC-206, was chosen as the target protein ligand. A series of novel MNK-PROTACs were designed, synthesized and evaluated biological activity. Several compounds showed good inhibitory activities against MNK1/2. Besides, compounds exhibited moderate to excellent anti-proliferative activity in A549 and TMD-8 cells in vitro. In particular, compound II-5 significantly inhibited A549 (IC50 = 1.79 μM) and TMD-8 (IC50 = 1.07 μM) cells. The protein degradation assay showed that compound II-5 had good capability to degrade MNK1. The MNK-PROTACs strategy represents a new direction in treating tumors and deserves further exploration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 7

Similar content being viewed by others

References

  1. Pinto-Diez C, Ferreras-Martin R, Carrion-Marchante R, Gonzalez VM, Elena MM (2020) Deeping in the role of the MAP-kinases interacting kinases (MNKs) in cancer. Int J Mol Sci 21(8):2967. https://doi.org/10.3390/ijms21082967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Buxade M, Parra-Palau JL, Proud CG (2008) The Mnks: MAP kinase-interacting kinases (MAP kinase signal-integrating kinases). FBL 13(14):5359–5373. https://doi.org/10.2741/3086

    Article  CAS  Google Scholar 

  3. Jauch R, Jakel S, Netter C, Schreiter K, Aicher B, Jackle H et al (2005) Crystal structures of the Mnk2 kinase domain reveal an inhibitory conformation and a zinc binding site. Structure 13(10):1559–1568. https://doi.org/10.1016/j.str.2005.07.013

    Article  CAS  PubMed  Google Scholar 

  4. Roux PP, Blenis J (2004) ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev 68(2):320–344. https://doi.org/10.1128/mmbr.68.2.320-344.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Scheper GC, Proud CG (2002) Does phosphorylation of the cap-binding protein eIF4E play a role in translation initiation? Eur J Biochem 269(22):5350–5359. https://doi.org/10.1046/j.1432-1033.2002.03291.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yang X, Zhong W, Cao R (2020) Phosphorylation of the mRNA cap-binding protein eIF4E and cancer. Cell Signal 73:109689. https://doi.org/10.1016/j.cellsig.2020.109689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fernandez A, Monsen PJ, Platanias LC, Schiltz GE (2023) Medicinal chemistry approaches to target the MNK-eIF4E axis in cancer. RSC Med Chem 14(6):1060–1087. https://doi.org/10.1039/d3md00121k

    Article  CAS  PubMed  Google Scholar 

  8. Batool A, Aashaq S, Andrabi KI (2019) Eukaryotic initiation factor 4E (eIF4E): a recap of the cap-binding protein. J Cell Biochem 120(9):14201–14212. https://doi.org/10.1002/jcb.28851

    Article  CAS  PubMed  Google Scholar 

  9. Hay N (2010) Mnk earmarks eIF4E for cancer therapy. Proc Natl Acad Sci USA 107(32):13975–13976. https://doi.org/10.1073/pnas.1008908107

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  10. Yang J, Li G, Huang Y, Liu Y (2023) Decreasing expression of Prohibitin-2 lowers the oncogenicity of renal cell carcinoma cells by suppressing eIF4E-mediated oncogene translation via MNK inhibition. Toxicol Appl Pharmacolo 466:116458. https://doi.org/10.1016/j.taap.2023.116458

    Article  CAS  Google Scholar 

  11. Ueda T, Watanabe-Fukunaga R, Fukuyama H, Nagata S, Fukunaga R (2004) Mnk2 and Mnk1 are essential for constitutive and inducible phosphorylation of eukaryotic initiation factor 4E but not for cell growth or development. Mol Cell Biol 24(15):6539–6549. https://doi.org/10.1128/MCB.24.15.6539-6549.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Xu W, Kannan S, Verma CS, Nacro K (2022) Update on the development of MNK inhibitors as therapeutic agents. J Med Chem 65(2):983–1007. https://doi.org/10.1021/acs.jmedchem.1c00368

    Article  CAS  PubMed  Google Scholar 

  13. Santag S, Siegel F, Wengner AM, Lange C, Boemer U, Eis K et al (2017) BAY 1143269, a novel MNK1 inhibitor, targets oncogenic protein expression and shows potent anti-tumor activity. Cancer Lett 390:21–29. https://doi.org/10.1016/j.canlet.2016.12.029

    Article  CAS  PubMed  Google Scholar 

  14. Santag S, Siegel F, Wegner AM, Schneider C, Boemer U, Eis K et al (2015) Preclinical anti-tumor efficacy and mode of action of a novel, orally available, selective MKNK1 inhibitor BAY 1143269. Can Res 75:2604. https://doi.org/10.1158/1538-7445.Am2015-2604

    Article  Google Scholar 

  15. Reich SH, Sprengeler PA, Chiang GG, Appleman JR, Chen J, Clarine J et al (2018) Structure-based design of pyridone-aminal eFT508 targeting dysregulated translation by selective mitogen-activated protein kinase interacting kinases 1 and 2 (MNK1/2) Inhibition. J Med Chem 61(8):3516–3540. https://doi.org/10.1021/acs.jmedchem.7b01795

    Article  CAS  PubMed  Google Scholar 

  16. Teneggi V, Novotny-Diermayr V, Lee LH, Yasin M, Yeo P, Ethirajulu K et al (2020) First-in-human, healthy volunteers integrated protocol of ETC-206, an oral Mnk 1/2 kinase inhibitor oncology drug. Clin Transl Sci 13(1):57–66. https://doi.org/10.1111/cts.12678

    Article  PubMed  Google Scholar 

  17. Yang H, Chennamaneni LR, Ho MWT, Ang SH, Tan ESW, Jeyaraj DA et al (2018) Optimization of selective mitogen-activated protein kinase interacting kinases 1 and 2 inhibitors for the treatment of blast crisis leukemia. J Med Chem 61(10):4348–4369. https://doi.org/10.1021/acs.jmedchem.7b01714

    Article  CAS  PubMed  Google Scholar 

  18. Bu H, Yuan X, Wu H, Zhou J, Zhang H (2021) Design, synthesis and biological evaluation of imidazopyridazine derivatives containing isoquinoline group as potent MNK1/2 inhibitors. Bioorg Med Chem 40:116186. https://doi.org/10.1016/j.bmc.2021.116186

    Article  CAS  PubMed  Google Scholar 

  19. Zhang X, Meng T, Cui S, Feng L, Liu D, Pang Q et al (2021) Ubiquitination of nonhistone proteins in cancer development and treatment. Front Oncol 10:621294. https://doi.org/10.3389/fonc.2020.621294

    Article  PubMed  PubMed Central  Google Scholar 

  20. Neklesa TK, Winkler JD, Crews CM (2017) Targeted protein degradation by PROTACs. Pharmacol Ther 174:138–144. https://doi.org/10.1016/j.pharmthera.2017.02.027

    Article  CAS  PubMed  Google Scholar 

  21. Sun Y, Zhao X, Ding N, Gao H, Wu Y, Yang Y et al (2018) PROTAC-induced BTK degradation as a novel therapy for mutated BTK C481S induced ibrutinib-resistant B-cell malignancies. Cell Res 28(7):779–781. https://doi.org/10.1038/s41422-018-0055-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gu S, Cui D, Chen X, Xiong X, Zhao Y (2018) PROTACs: an emerging targeting technique for protein degradation in drug discovery. BioEssays 40(4):e1700247. https://doi.org/10.1002/bies.201700247

    Article  CAS  PubMed  Google Scholar 

  23. Lai AC, Crews CM (2017) Induced protein degradation: an emerging drug discovery paradigm. Nat Rev Drug Discovery 16(2):101–114. https://doi.org/10.1038/nrd.2016.211

    Article  CAS  PubMed  Google Scholar 

  24. Toure M, Crews CM (2016) Small-molecule PROTACS: new approaches to protein degradation. Angew Chem Int Ed 55(6):1966–1973. https://doi.org/10.1002/anie.201507978

    Article  CAS  Google Scholar 

  25. Yamanaka S, Furihata H, Yanagihara Y, Taya A, Nagasaka T, Usui M et al (2023) Lenalidomide derivatives and proteolysis-targeting chimeras for controlling neosubstrate degradation. Nat Commun 14(1):4683. https://doi.org/10.1038/s41467-023-40385-9

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ito T, Ando H, Suzuki T, Ogura T, Hotta K, Imamura Y et al (2010) Identification of a primary target of thalidomide teratogenicity. Science 327(5971):1345–1350. https://doi.org/10.1126/science.1177319

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Webster KR, Goel VK, Hung INJ, Parker GS, Staunton J, Neal M et al (2015) eFT508, a potent and selective mitogen-activated protein kinase interacting kinase (MNK) 1 and 2 inhibitor, is efficacious in preclinical models of diffuse large B-cell lymphoma (DLBCL). Blood 126(23):1554. https://doi.org/10.1182/blood.V126.23.1554.1554

    Article  Google Scholar 

Download references

Funding

This study was supported by the Lingang Laboratory (Grant No. LG202103-02-08).

Author information

Authors and Affiliations

Authors

Contributions

SX and WQY wrote the manuscript, designed the study, performed experiments and analyzed the data. BH designed the study, performed experiments and analyzed the data. PYF carried out the research on molecular docking and analyzed the data. GDZ and GS provided materials and important suggestions. ZJP and ZHB designed the study, supervised the study and revised the manuscript.

Corresponding authors

Correspondence to Jinpei Zhou or Huibin Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5296 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Wu, Q., Bu, H. et al. Design, synthesis and biological evaluation of MNK-PROTACs. Mol Divers (2024). https://doi.org/10.1007/s11030-023-10776-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11030-023-10776-7

Keywords

Navigation