Skip to main content

Advertisement

Log in

Potential protein kinase inhibitors that target G-quadruplex DNA structures in the human telomeric regions

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Telomeric regions contain Guanine-rich sequences arranged in a planar manner and connected by Hoogsteen hydrogen bonds that can fold into G-quadruplex (G4) DNA structures, and can be stabilized by monovalent metal cations. The presence of G4 DNA holds significance in cancer-related processes, especially due to their regulatory potential at transcriptional and translational levels of oncogene and tumor suppressor genes. The objective of this current research is to explore the evolving realm of FDA-approved protein kinase inhibitors, with a specific emphasis on their capacity to stabilize the G4 DNA structures formed at the human telomeric regions. This involves investigating the possibility of repurposing FDA-approved protein kinase inhibitors as a novel approach for targeting multiple cancer types. In this context, we have selected 16 telomeric G4 DNA structures as targets and 71 FDA-approved small-molecule protein kinase inhibitors as ligands. To investigate their binding affinities, molecular docking of human telomeric G4 DNA with nuclear protein kinase inhibitors and their corresponding co-crystalized ligands were performed. We found that Ponatinib and Lapatinib interact with all the selected G4 targets, the binding free energy calculations, and molecular dynamic simulations confirm their binding efficacy and stability. Thus, it is hypothesized that Ponatinib and Lapatinib may stabilize human telomeric G4 DNA in addition to their ability to inhibit BCR-ABL and the other members of the EGFR family. As a result, we also hypothesize that the stabilization of G4 DNA might represent an additional underlying mechanism contributing to their efficacy in exerting anti-cancer effects.

Graphical abstract

Stabilizing G4 structures at the human telomeric regions by the FDA-approved kinase inhibitors that targets nuclear kinases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

G4:

G-quadruplex

hTERT:

Human telomerase reverse transcriptase

CML:

Chronic myeloid leukemia

PDB:

Protein data bank

SDF:

Structure data file

RMSD:

Root mean square deviation

OPLS4:

Optimized potential for liquid simulations

XP:

Extra precision

MMGBSA:

Molecular mechanics with generalized born and surface area solvation

VGSB:

Variable dielectric surface generalised born

CgenFF:

CHARMM general force field

NVT:

Number of particles, volume, and temperature

NPT:

Number of particles, pressure, and temperature

References

  1. Phan AT, Kuryavyi V, Patel DJ (2006) DNA architecture: from G to Z. Curr Opin Struct Biol 16:288. https://doi.org/10.1016/J.SBI.2006.05.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wells RD (2007) Non-B DNA conformations, mutagenesis and disease. Trends Biochem Sci 32:271–278. https://doi.org/10.1016/J.TIBS.2007.04.003

    Article  CAS  PubMed  Google Scholar 

  3. Sen D, Gilbert W (1988) Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis. Nature 334:364–366. https://doi.org/10.1038/334364A0

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Nakanishi C, Seimiya H (2020) G-quadruplex in cancer biology and drug discovery. Biochem Biophys Res Commun 531:45–50. https://doi.org/10.1016/J.BBRC.2020.03.178

    Article  CAS  PubMed  Google Scholar 

  5. Ma Y, Iida K, Nagasawa K (2020) Topologies of G-quadruplex: biological functions and regulation by ligands. Biochem Biophys Res Commun 531:3–17. https://doi.org/10.1016/J.BBRC.2019.12.103

    Article  CAS  PubMed  Google Scholar 

  6. Largy E, Mergny JL, Gabelica V (2016) Role of alkali metal ions in G-quadruplex nucleic acid structure and stability. Met Ions Life Sci 16:203–258. https://doi.org/10.1007/978-3-319-21756-7_7

    Article  CAS  PubMed  Google Scholar 

  7. Chambers VS, Marsico G, Boutell JM, Di Antonio M, Smith GP, Balasubramanian S (2015) High-throughput sequencing of DNA G-quadruplex structures in the human genome. Nat Biotechnol 33:877–881. https://doi.org/10.1038/NBT.3295

    Article  CAS  PubMed  Google Scholar 

  8. Eddy J, Maizels N (2006) Gene function correlates with potential for G4 DNA formation in the human genome. Nucleic Acids Res 34:3887–3896. https://doi.org/10.1093/NAR/GKL529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pavlova AV, Kubareva EA, Monakhova MV, Zvereva MI, Dolinnaya NG (2021) Impact of G-quadruplexes on the regulation of genome integrity, DNA damage and repair. Biomolecules. https://doi.org/10.3390/BIOM11091284

    Article  PubMed  PubMed Central  Google Scholar 

  10. Balasubramanian S, Hurley LH, Neidle S (2011) Targeting G-quadruplexes in gene promoters: a novel anticancer strategy? Nat Rev Drug Discov 10:261–275. https://doi.org/10.1038/NRD3428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. De S, Michor F (2011) DNA secondary structures and epigenetic determinants of cancer genome evolution. Nat Struct Mol Biol 18:950–955. https://doi.org/10.1038/NSMB.2089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sanchez-Martin V, Lopez-Pujante C, Soriano-Rodriguez M, Garcia-Salcedo JA (2020) An Updated focus on quadruplex structures as potential therapeutic targets in cancer. Int J Mol Sci 21:1–24. https://doi.org/10.3390/IJMS21238900

    Article  Google Scholar 

  13. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. https://doi.org/10.1016/J.CELL.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  14. Henderson E, Hardin CC, Walk SK, Tinoco I, Blackburn EH (1987) Telomeric DNA oligonucleotides form novel intramolecular structures containing guanine-guanine base pairs. Cell 51:899–908. https://doi.org/10.1016/0092-8674(87)90577-0

    Article  CAS  PubMed  Google Scholar 

  15. Monsen RC, DeLeeuw L, Dean WL, Gray RD, Sabo TM, Chakravarthy S, Chaires JB, Trent JO (2020) The hTERT core promoter forms three parallel G-quadruplexes. Nucleic Acids Res 48:5720–5734. https://doi.org/10.1093/NAR/GKAA107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gu W, Lin Z, Zhao S, Wang G, Shen Z, Liu W, Cai Y, Wang K, Wan CC, Yan T (2022) Research progress on G-quadruplexes in human telomeres and human telomerase reverse transcriptase (hTERT) promoter. Oxid Med Cell Longev. https://doi.org/10.1155/2022/2905663

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sanchez-Martin V, Soriano M, Garcia-Salcedo JA (2021) Quadruplex ligands in cancer therapy. Cancers (Basel). https://doi.org/10.3390/CANCERS13133156

    Article  PubMed  Google Scholar 

  18. Pirota V, Nadai M, Doria F, Richter SN (2019) Naphthalene diimides as multimodal G-quadruplex-selective ligands. Molecules. https://doi.org/10.3390/MOLECULES24030426

    Article  PubMed  PubMed Central  Google Scholar 

  19. Burger AM, Dai F, Schultes CM, Reszka AP, Moore MJ, Double JA, Neidle S (2005) The G-quadruplex-interactive molecule BRACO-19 inhibits tumor growth, consistent with telomere targeting and interference with telomerase function. Cancer Res 65:1489–1496. https://doi.org/10.1158/0008-5472.CAN-04-2910

    Article  CAS  PubMed  Google Scholar 

  20. Wheelhouse RT, Sun D, Han H, Han FX, Hurley LH (1998) Cationic porphyrins as telomerase inhibitors: the interaction of tetra-(N-methyl-4-pyridyl)porphine with quadruplex DNA. J Am Chem Soc 120:3261–3262. https://doi.org/10.1021/ja973792e

    Article  CAS  Google Scholar 

  21. Liu LY, Ma TZ, Zeng YL, Liu W, Mao ZW (2022) Structural basis of pyridostatin and its derivatives specifically binding to G-quadruplexes. J Am Chem Soc 144:11878–11887. https://doi.org/10.1021/JACS.2C04775

    Article  CAS  PubMed  Google Scholar 

  22. Ghosh A, Trajkovski M, Teulade-Fichou MP, Gabelica V, Plavec J (2022) Phen-DC3 induces refolding of human telomeric dna into a chair-type antiparallel G-quadruplex through ligand intercalation. Angew Chem Int Ed Engl 5:35. https://doi.org/10.1002/ANIE.202207384

    Article  Google Scholar 

  23. Tera M, Ishizuka H, Takagi M, Suganuma M, Shin-Ya K, Nagasawa K (2008) Macrocyclic hexaoxazoles as sequence- and mode-selective G-quadruplex binders. Angew Chem Int Ed Engl 47:5557–5560. https://doi.org/10.1002/ANIE.200801235

    Article  CAS  PubMed  Google Scholar 

  24. Tera M, Iida K, Ishizuka H, Takagi M, Suganuma M, Doi T, Shin-Ya K, Nagasawa K (2009) Synthesis of a potent G-quadruplex-binding macrocyclic heptaoxazole. ChemBioChem 10:431–435. https://doi.org/10.1002/CBIC.200800563

    Article  CAS  PubMed  Google Scholar 

  25. Rodriguez R, Miller KM, Forment JV, Bradshaw CR, Nikan M, Britton S, Oelschlaegel T, Xhemalce B, Balasubramanian S, Jackson SP (2012) Small-molecule-induced DNA damage identifies alternative DNA structures in human genes. Nat Chem Biol 8:301–310. https://doi.org/10.1038/NCHEMBIO.780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Koirala D, Dhakal S, Ashbridge B, Sannohe Y, Rodriguez R, Sugiyama H, Balasubramanian S, Mao H (2011) A single-molecule platform for investigation of interactions between G-quadruplexes and small-molecule ligands. Nat Chem 3:782–787. https://doi.org/10.1038/NCHEM.1126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Revikumar A, Kashyap V, Palollathil A, Aravind A, Raguraman R, Kumar KMK, Vijayakumar M, Prasad TSK, Raju R (2022) Multiple G-quadruplex binding ligand induced transcriptomic map of cancer cell lines. J Cell Commun Signal 16:129–135. https://doi.org/10.1007/S12079-021-00637-Z

    Article  CAS  PubMed  Google Scholar 

  28. De Lange T (2005) Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 19:2100–2110. https://doi.org/10.1101/GAD.1346005

    Article  PubMed  Google Scholar 

  29. Victorelli S, Passos JF (2017) Telomeres and cell senescence—size matters not. EBioMedicine 21:14–20. https://doi.org/10.1016/J.EBIOM.2017.03.027

    Article  PubMed  PubMed Central  Google Scholar 

  30. Cohen SB, Graham ME, Lovrecz GO, Bache N, Robinson PJ, Reddel RR (2007) Protein composition of catalytically active human telomerase from immortal cells. Science 315:1850–1853. https://doi.org/10.1126/SCIENCE.1138596

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Trybek T, Kowalik A, Góźdź S, Kowalska A (2020) Telomeres and telomerase in oncogenesis. Oncol Lett 20:1015–1027. https://doi.org/10.3892/OL.2020.11659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ghosh A, Saginc G, Leow SC, Khattar E, Shin EM, Yan TD, Wong M, Zhang Z, Li G, Sung WK, Zhou J, Chng WJ, Li S, Liu E, Tergaonkar V (2012) Telomerase directly regulates NF-κB-dependent transcription. Nat Cell Biol 14:1270–1281. https://doi.org/10.1038/NCB2621

    Article  CAS  PubMed  Google Scholar 

  33. Liu H, Liu Q, Ge Y, Zhao Q, Zheng X, Zhao Y (2016) hTERT promotes cell adhesion and migration independent of telomerase activity. Sci Rep. https://doi.org/10.1038/SREP22886

    Article  PubMed  PubMed Central  Google Scholar 

  34. Koh CM, Khattar E, Leow SC, Liu CY, Muller J, Ang WX, Li Y, Franzoso G, Li S, Guccione E, Tergaonkar V (2015) Telomerase regulates MYC-driven oncogenesis independent of its reverse transcriptase activity. J Clin Invest 125:2109–2122. https://doi.org/10.1172/JCI79134

    Article  PubMed  PubMed Central  Google Scholar 

  35. Shay JW, Wright WE (2019) Telomeres and telomerase: three decades of progress. Nat Rev Genet 20:299–309. https://doi.org/10.1038/S41576-019-0099-1

    Article  CAS  PubMed  Google Scholar 

  36. Liu T, Yuan X, Xu D (2016) Cancer-specific telomerase reverse transcriptase (TERT) promoter mutations: biological and clinical implications. Genes (Basel). https://doi.org/10.3390/GENES7070038

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yuan X, Larsson C, Xu D (2019) Mechanisms underlying the activation of TERT transcription and telomerase activity in human cancer: old actors and new players. Oncogene 38:6172–6183. https://doi.org/10.1038/S41388-019-0872-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tawani A, Kumar A (2015) Structural insight into the interaction of flavonoids with human telomeric sequence. Sci Rep. https://doi.org/10.1038/SREP17574

    Article  PubMed  PubMed Central  Google Scholar 

  39. Mendes E, Aljnadi IM, Bahls B, Victor BL, Paulo A (2022) Major achievements in the design of quadruplex-interactive small molecules. Pharmaceuticals (Basel). https://doi.org/10.3390/PH15030300

    Article  PubMed  Google Scholar 

  40. Franceschin M, Rossetti L, D’Ambrosio A, Schirripa S, Bianco A, Ortaggi G, Savino M, Schultes C, Neidle S (2006) Natural and synthetic G-quadruplex interactive berberine derivatives. Bioorg Med Chem Lett 16:1707–1711. https://doi.org/10.1016/J.BMCL.2005.12.001

    Article  CAS  PubMed  Google Scholar 

  41. Sun D, Thompson B, Cathers BE, Salazar M, Kerwin SM, Trent JO, Jenkins TC, Neidle S, Hurley LH (1997) Inhibition of human telomerase by a G-quadruplex-interactive compound. J Med Chem 40:2113–2116. https://doi.org/10.1021/JM970199Z

    Article  CAS  PubMed  Google Scholar 

  42. Zheng XH, Chen HY, Tong ML, Ji LN, Mao ZW (2012) Platinum squares with high selectivity and affinity for human telomeric G-quadruplexes. Chem Commun (Camb) 48:7607–7609. https://doi.org/10.1039/C2CC32942E

    Article  CAS  PubMed  Google Scholar 

  43. Tawani A, Amanullah A, Mishra A, Kumar A (2016) Evidences for piperine inhibiting cancer by targeting human G-quadruplex DNA sequences. Sci Rep. https://doi.org/10.1038/SREP39239

    Article  PubMed  PubMed Central  Google Scholar 

  44. Tyagi S, Saxena S, Srivastava P, Sharma T, Kundu N, Kaur S, Shankaraswamy J (2020) Screening the binding potential of quercetin with parallel, antiparallel and mixed G-quadruplexes of human telomere and cancer protooncogenes using molecular docking approach. SN Appl Sci 2:1–16. https://doi.org/10.1007/S42452-020-2280-8/TABLES/3

    Article  Google Scholar 

  45. Jha NS, Mishra S, Mamidi AS, Mishra A, Jha SK, Surolia A (2016) Targeting human telomeric G-quadruplex DNA with curcumin and its synthesized analogues under molecular crowding conditions. RSC Adv 6:7474–7487. https://doi.org/10.1039/C5RA17390F

    Article  ADS  CAS  Google Scholar 

  46. Revikumar A (2021) Amentoflavone as a potential telomeric G-quadruplex DNA stabilizing agent. Gene Rep 22:100976. https://doi.org/10.1016/j.genrep.2020.100976

    Article  CAS  Google Scholar 

  47. Fabbro D, Cowan-Jacob SW, Moebitz H (2015) Ten things you should know about protein kinases: IUPHAR review 14. Br J Pharmacol 172:2675–2700. https://doi.org/10.1111/BPH.13096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Iqbal N, Iqbal N (2014) Imatinib: a breakthrough of targeted therapy in cancer. Chemother Res Pract 2014:1–9. https://doi.org/10.1155/2014/357027

    Article  CAS  Google Scholar 

  49. Kancha RK, Von Bubnoff N, Miething C, Peschel C, Götze KS, Duyster J (2008) Imatinib and leptomycin B are effective in overcoming imatinib-resistance due to Bcr-Abl amplification and clonal evolution but not due to Bcr-Abl kinase domain mutation. Haematologica 93:1718–1722. https://doi.org/10.3324/HAEMATOL.13207

    Article  CAS  PubMed  Google Scholar 

  50. Wang YH, Yang QF, Lin X, Chen D, Wang ZY, Chen B, Han HY, Di CH, Cai KC, Li Q, Yang S, Tang YL, Li F (2022) G4LDB 2.2: a database for discovering and studying G-quadruplex and i-motif ligands. Nucleic Acids Res 50:D150–D160. https://doi.org/10.1093/NAR/GKAB952

    Article  CAS  PubMed  Google Scholar 

  51. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242. https://doi.org/10.1093/NAR/28.1.235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Roskoski R (2023) Properties of FDA-approved small molecule protein kinase inhibitors: a 2023 update. Pharmacol Res. https://doi.org/10.1016/J.PHRS.2022.106552

    Article  PubMed  Google Scholar 

  53. Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, Han L, He J, He S, Shoemaker BA, Wang J, Yu B, Zhang J, Bryant SH (2016) PubChem substance and compound databases. Nucleic Acids Res 44:D1202–D1213. https://doi.org/10.1093/NAR/GKV951

    Article  CAS  PubMed  Google Scholar 

  54. O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) Open Babel: an open chemical toolbox. J Cheminform. https://doi.org/10.1186/1758-2946-3-33

    Article  PubMed  PubMed Central  Google Scholar 

  55. Reimand J, Kull M, Peterson H, Hansen J, Vilo J (2007) g:Profiler–a web-based toolset for functional profiling of gene lists from large-scale experiments. Nucleic Acids Res. https://doi.org/10.1093/NAR/GKM226

    Article  PubMed  PubMed Central  Google Scholar 

  56. Madhavi Sastry G, Adzhigirey M, Day T, Annabhimoju R, Sherman W (2013) Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des 27:221–234. https://doi.org/10.1007/S10822-013-9644-8

    Article  ADS  CAS  PubMed  Google Scholar 

  57. Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 49:6177–6196. https://doi.org/10.1021/JM051256O

    Article  CAS  PubMed  Google Scholar 

  58. Pettersen EF, Goddard TD, Huang CC, Meng EC, Couch GS, Croll TI, Morris JH, Ferrin TE (2021) UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci 30:70–82. https://doi.org/10.1002/PRO.3943

    Article  CAS  PubMed  Google Scholar 

  59. Jacobson MP, Pincus DL, Rapp CS, Day TJF, Honig B, Shaw DE, Friesner RA (2004) A hierarchical approach to all-atom protein loop prediction. Proteins 55:351–367. https://doi.org/10.1002/PROT.10613

    Article  CAS  PubMed  Google Scholar 

  60. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindah E (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2:19–25. https://doi.org/10.1016/J.SOFTX.2015.06.001

    Article  ADS  Google Scholar 

  61. Berendsen HJC, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91:43–56. https://doi.org/10.1016/0010-4655(95)00042-E

    Article  ADS  CAS  Google Scholar 

  62. Hart K, Foloppe N, Baker CM, Denning EJ, Nilsson L, MacKerell AD (2012) Optimization of the CHARMM additive force field for DNA: improved treatment of the BI/BII conformational equilibrium. J Chem Theory Comput 8:348–362. https://doi.org/10.1021/CT200723Y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Huang J, Rauscher S, Nawrocki G, Ran T, Feig M, De Groot BL, Grubmüller H, MacKerell AD (2017) CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat Methods 14:71–73. https://doi.org/10.1038/NMETH.4067

    Article  CAS  PubMed  Google Scholar 

  64. Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O, Lopes P, Vorobyov I, Mackerell AD (2010) CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 31:671–690. https://doi.org/10.1002/JCC.21367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sun D, Lakkaraju SK, Jo S, Mackerell AD (2018) Determination of ionic hydration free energies with grand canonical Monte Carlo/molecular dynamics simulations in explicit water. J Chem Theory Comput 14:5290–5302. https://doi.org/10.1021/ACS.JCTC.8B00604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mauri M, Elli T, Caviglia G, Uboldi G, Azzi M (2017) RAWGraphs: a visualisation platform to create open outputs. ACM International Conference Proceeding Series Part F131371. https://doi.org/10.1145/3125571.3125585

  67. de Lange T, Shiue L, Myers RM, Cox DR, Naylor SL, Killery AM, Varmus HE (1990) Structure and variability of human chromosome ends. Mol Cell Biol 10:518–527. https://doi.org/10.1128/MCB.10.2.518-527.1990

    Article  PubMed  PubMed Central  Google Scholar 

  68. Kim MY, Vankayalapati H, Shin-Ya K, Wierzba K, Hurley LH (2002) Telomestatin, a potent telomerase inhibitor that interacts quite specifically with the human telomeric intramolecular g-quadruplex. J Am Chem Soc 124:2098–2099. https://doi.org/10.1021/JA017308Q

    Article  CAS  PubMed  Google Scholar 

  69. Cortes JE, Kantarjian H, Shah NP, Bixby D, Mauro MJ, Flinn I, O’Hare T, Hu S, Narasimhan NI, Rivera VM, Clackson T, Turner CD, Haluska FG, Druker BJ, Deininger MWN, Talpaz M (2012) Ponatinib in refractory Philadelphia chromosome-positive leukemias. N Engl J Med 367:2075–2088. https://doi.org/10.1056/NEJMOA1205127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sanford D, Kantarjtan H, Skinner J, Jabbour E, Cortes J (2015) Phase II trial of ponatinib in patients with chronic myeloid leukemia resistant to one previous tyrosine kinase inhibitor. Haematologica 100:e494–e495. https://doi.org/10.3324/HAEMATOL.2015.132845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cortes JE, Kim D-W, Pinilla-Ibarz J, le Coutre P, Paquette R, Chuah C, Nicolini FE, Apperley JF, Khoury HJ, Talpaz M, DiPersio J, DeAngelo DJ, Abruzzese E, Rea D, Baccarani M, Müller MC, Gambacorti-Passerini C, Wong S, Lustgarten S, Rivera VM, Clackson T, Turner CD, Haluska FG, Guilhot F, Deininger MW, Hochhaus A, Hughes T, Goldman JM, Shah NP, Kantarjian H (2013) A phase 2 trial of ponatinib in Philadelphia chromosome-positive leukemias. N Engl J Med 369:1783–1796. https://doi.org/10.1056/NEJMOA1306494

    Article  CAS  PubMed  Google Scholar 

  72. Tan FH, Putoczki TL, Stylli SS, Luwor RB (2019) Ponatinib: a novel multi-tyrosine kinase inhibitor against human malignancies. Onco Targets Ther 12:635–645. https://doi.org/10.2147/OTT.S189391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. The characterization of novel, dual ErbB-2/EGFR, tyrosine kinase inhibitors: potential therapy for cancer-PubMed. https://pubmed.ncbi.nlm.nih.gov/11585755/. Accessed 26 Aug 2023

  74. Salem AA, El Haty IA, Ghattas MA (2022) GW-2974 and SCH-442416 modulators of tyrosine kinase and adenosine receptors can also stabilize human telomeric G-quadruplex DNA. PLoS ONE. https://doi.org/10.1371/JOURNAL.PONE.0277963

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Yenepoya (Deemed to be University) for the facility support to the Centre for Integrative Omics Data Science (CIODS). Amjesh Revikumar is a recipient of a national post-doctoral fellowship (PDF/2017/001652) and Rajesh Raju is a recipient of the Young Scientist Award (YSS/2014/000607) from the Science and Engineering Research Board, Department of Science and Technology (DST), Government of India.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

AR: developed the original hypothesis for the work. AR and BB: developed the computational workflow and wrote the initial draft of the manuscript. BB, AJK, and HK: did the Molecular docking and dynamics studies. LJ: developed the graphical contents in the manuscript. SS, RR: critically evaluated the manuscript and ensured that the study’s scientific aspect was rationally valid. All authors read, edited, and approved the final manuscript.

Corresponding authors

Correspondence to Rajesh Raju or Amjesh Revikumar.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banjan, B., Koshy, A.J., Kalath, H. et al. Potential protein kinase inhibitors that target G-quadruplex DNA structures in the human telomeric regions. Mol Divers (2024). https://doi.org/10.1007/s11030-023-10768-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11030-023-10768-7

Keywords

Navigation