Skip to main content

Advertisement

Log in

Network pharmacological analysis and experimental study of cucurbitacin B in oral squamous cell carcinoma

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Oral squamous cell carcinoma (OSCC) is a malignant tumor with a high incidence and poor prognosis. Cucurbitacin B (CuB) is a tetracyclic triterpenoid small-molecule compound extracted from plants, such as Cucurbitaceae and Brassicaceae, which has powerful anticancer effects. However, the effect and mechanism of CuB on OSCC remain unclear. Within the framework of the current study, network pharmacology was used to analyze the relationship between CuB and OSCC. The network pharmacology analysis showed that CuB and OSCC share 134 common targets; among them, PIK3R1, SRC, STAT3, AKT1, and MAPK1 are the key targets. The molecular docking analysis showed that CuB binds five target proteins. The results of the enrichment analysis showed that CuB exerted effects on OSCC through various pathways; of these pathways, PI3K-AKT was the most important pathway. The results of the in vitro cell experiments showed that CuB could inhibit the proliferation and migration of SCC25 and CAL27 cells, block the cell cycle in the G2 phase, induce cell apoptosis, and regulate the protein expression of the PI3K-AKT signaling pathway. The results of the in vivo animal experiments showed that CuB could inhibit 4NQO-induced oral cancer in mice. Therefore, network pharmacology, molecular docking, cell experiments, and animal experiments showed that CuB could play a role in OSCC by regulating multiple targets and pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The original contributions presented in the study are included in the article/Supplementary Material; further inquiries can be directed to the corresponding author.

Abbreviations

4NQO:

4-Nitroquinoline-1-oxide

AKT1:

AKT Serine/threonine kinase 1

CTD:

Comparative toxicogenomics database

CuB:

Cucurbitacin B

DMSO:

Dimethylsulfoxide

ETCM:

The encyclopedia of traditional Chinese medicine

HERB:

High-throughput experiment- and reference-guided database of TCM

MAPK1:

Mitogen-activated protein kinase 1

OSCC:

Oral squamous cell carcinoma

PIK3R1:

Phosphoinositide-3-kinase regulatory subunit 1

SRC:

Proto-oncogene non-receptor tyrosine kinase SRC

STAT3:

Signal transducer and activator of transcription-3

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A et al (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: Cancer J Clin 71(3):209–249. https://doi.org/10.3322/caac.21660

    Article  PubMed  Google Scholar 

  2. Talevi A (2015) Multi-target pharmacology: possibilities and limitations of the “skeleton key approach” from a medicinal chemist perspective. Front Pharmacol 6:205. https://doi.org/10.3389/fphar.2015.00205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yang T, Sui X, Yu B, Shen Y, Cong H (2020) Recent advances in the rational drug design based on multi-target ligands. Curr Med Chem 27(28):4720–4740. https://doi.org/10.2174/0929867327666200102120652

    Article  CAS  PubMed  Google Scholar 

  4. Zhang L, Song J, Kong L, Yuan T, Li W, Zhang W et al (2020) The strategies and techniques of drug discovery from natural products. Pharmacol Ther 216:107686. https://doi.org/10.1016/j.pharmthera.2020.107686

    Article  CAS  PubMed  Google Scholar 

  5. Lertphadungkit P, Qiao X, Sirikantaramas S, Satitpatipan V, Ye M, Bunsupa S (2021) De novo transcriptome analysis and identification of candidate genes associated with triterpenoid biosynthesis in Trichosanthes cucumerina L. Plant Cell Rep 40(10):1845–1858. https://doi.org/10.1007/s00299-021-02748-8

    Article  CAS  PubMed  Google Scholar 

  6. Wahid S, Alqahtani A, Alam KR (2021) Analgesic and anti-inflammatory effects and safety profile of Cucurbita maxima and Cucumis sativus seeds. Saudi J Biol Sci 28(8):4334–4341. https://doi.org/10.1016/j.sjbs.2021.04.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cárdenas PD, Almeida A, Bak S (2019) Evolution of structural diversity of triterpenoids. Front Plant Sci 10:1523. https://doi.org/10.3389/fpls.2019.01523

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zhang X, Li H, Wang W, Chen T, Xuan L (2020) Lipid-lowering activities of Cucurbitacins isolated from trichosanthes Cucumeroides and their synthetic derivatives. J Nat Prod 83(12):3536–3544. https://doi.org/10.1021/acs.jnatprod.0c00364

    Article  CAS  PubMed  Google Scholar 

  9. Dai S, Wang C, Zhao X, Ma C, Fu K, Liu Y et al (2023) Cucurbitacin B: a review of its pharmacology, toxicity, and pharmacokinetics. Pharmacol Res 187:106587. https://doi.org/10.1016/j.phrs.2022.106587

    Article  CAS  PubMed  Google Scholar 

  10. Yuan R, Zhao W, Wang QQ, He J, Han S, Gao H et al (2021) Cucurbitacin B inhibits non-small cell lung cancer in vivo and in vitro by triggering TLR4/NLRP3/GSDMD-dependent pyroptosis. Pharmacol Res 170:105748. https://doi.org/10.1016/j.phrs.2021.105748

    Article  CAS  PubMed  Google Scholar 

  11. Ji X, Chen X, Sheng L, Deng D, Wang Q, Meng Y et al (2022) Metabolomics profiling of AKT/c-Met-induced hepatocellular carcinogenesis and the inhibitory effect of Cucurbitacin B in mice. Front Pharmacol 13:1009767. https://doi.org/10.3389/fphar.2022.1009767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang X, Bai Y, Yan X, Li J, Lin B, Dai L et al (2021) Cucurbitacin B exhibits antitumor effects on CD133+ HepG2 liver cancer stem cells by inhibiting JAK2/STAT3 signaling pathway. Anticancer Drugs 32(5):548–557. https://doi.org/10.1097/cad.0000000000001062

    Article  CAS  PubMed  Google Scholar 

  13. Liu JH, Li C, Cao L, Zhang CH, Zhang ZH (2022) Cucurbitacin B regulates lung cancer cell proliferation and apoptosis via inhibiting the IL-6/STAT3 pathway through the lncRNA XIST/miR-let-7c axis. Pharm Biol 60(1):154–162. https://doi.org/10.1080/13880209.2021.2016866

    Article  CAS  PubMed  Google Scholar 

  14. Wang X, Wang ZY, Zheng JH, Li S (2021) TCM network pharmacology: a new trend towards combining computational, experimental and clinical approaches. Chin J Nat Med 19(1):1–11. https://doi.org/10.1016/s1875-5364(21)60001-8

    Article  CAS  PubMed  Google Scholar 

  15. Zhou Z, Chen B, Chen S, Lin M, Chen Y, Jin S et al (2020) Applications of network pharmacology in traditional Chinese medicine research. Evid Based Complement Altern Med: eCAM 2020:1646905. https://doi.org/10.1155/2020/1646905

    Article  Google Scholar 

  16. Hou F, Yu Z, Cheng Y, Liu Y, Liang S, Zhang F (2022) Deciphering the pharmacological mechanisms of Scutellaria baicalensis Georgi on oral leukoplakia by combining network pharmacology, molecular docking and experimental evaluations. Phytomed: Int J Phytother Phytopharmacol 103:154195. https://doi.org/10.1016/j.phymed.2022.154195

    Article  CAS  Google Scholar 

  17. Pinzi L, Rastelli G (2019) Molecular docking: shifting paradigms in drug discovery. Int J Mol Sci. https://doi.org/10.3390/ijms20184331

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kumar S, Sengupta S, Ali I, Gupta MK, Lalhlenmawia H, Azizov S et al (2023) Identification and exploration of quinazoline-1,2,3-triazole inhibitors targeting EGFR in lung cancer. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2023.2204360

    Article  PubMed  Google Scholar 

  19. Davis AP, Grondin CJ, Johnson RJ, Sciaky D, Wiegers J, Wiegers TC et al (2021) Comparative Toxicogenomics Database (CTD): update 2021. Nucleic Acids Res 49(D1):D1138–D1143. https://doi.org/10.1093/nar/gkaa891

    Article  CAS  PubMed  Google Scholar 

  20. Fang S, Dong L, Liu L, Guo J, Zhao L, Zhang J et al (2021) HERB: a high-throughput experiment- and reference-guided database of traditional Chinese medicine. Nucleic Acids Res 49(D1):D1197–D1206. https://doi.org/10.1093/nar/gkaa1063

    Article  CAS  PubMed  Google Scholar 

  21. Xu HY, Zhang YQ, Liu ZM, Chen T, Lv CY, Tang SH et al (2019) ETCM: an encyclopaedia of traditional Chinese medicine. Nucleic Acids Res 47(D1):D976–D982. https://doi.org/10.1093/nar/gky987

    Article  CAS  PubMed  Google Scholar 

  22. Wang X, Shen Y, Wang S, Li S, Zhang W, Liu X et al (2017) PharmMapper 2017 update: a web server for potential drug target identification with a comprehensive target pharmacophore database. Nucleic Acids Res 45(W1):W356–W360. https://doi.org/10.1093/nar/gkx374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Amberger JS, Bocchini CA, Scott AF, Hamosh A (2019) OMIM.org: leveraging knowledge across phenotype-gene relationships. Nucleic Acids Res 47(D1):D1038–D1043. https://doi.org/10.1093/nar/gky1151

    Article  CAS  PubMed  Google Scholar 

  24. von Mering C, Huynen M, Jaeggi D, Schmidt S, Bork P, Snel B (2003) STRING: a database of predicted functional associations between proteins. Nucleic Acids Res 31(1):258–261. https://doi.org/10.1093/nar/gkg034

    Article  CAS  Google Scholar 

  25. Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O et al (2019) Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun 10(1):1523. https://doi.org/10.1038/s41467-019-09234-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Burley SK, Bhikadiya C, Bi C, Bittrich S, Chen L, Crichlow GV et al (2021) RCSB Protein Data Bank: powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Res 49(D1):D437–D451. https://doi.org/10.1093/nar/gkaa1038

    Article  CAS  PubMed  Google Scholar 

  27. Müller S (2017) Update from the 4th Edition of the World Health Organization of head and neck tumours: tumours of the oral cavity and mobile tongue. Head Neck Pathol 11(1):33–40. https://doi.org/10.1007/s12105-017-0792-3

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kumar S, Abbas F, Ali I, Gupta MK, Kumar S, Garg M et al (2023) Integrated network pharmacology and in-silico approaches to decipher the pharmacological mechanism of Selaginella tamariscina in the treatment of non-small cell lung cancer. Phytomed Plus 3(2):100419. https://doi.org/10.1016/j.phyplu.2023.100419

    Article  Google Scholar 

  29. Vallejo-Díaz J, Chagoyen M, Olazabal-Morán M, González-García A, Carrera AC (2019) The opposing roles of PIK3R1/p85α and PIK3R2/p85β in cancer. Trends Cancer 5(4):233–244. https://doi.org/10.1016/j.trecan.2019.02.009

    Article  CAS  PubMed  Google Scholar 

  30. He S, Zhang W, Li X, Wang J, Chen X, Chen Y et al (2021) Oral squamous cell carcinoma (OSCC)-derived exosomal MiR-221 targets and regulates phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1) to promote human umbilical vein endothelial cells migration and tube formation. Bioengineered 12(1):2164–2174. https://doi.org/10.1080/21655979.2021.1932222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Martins F, de Sousa SC, Dos Santos E, Woo SB, Gallottini M (2016) PI3K-AKT-mTOR pathway proteins are differently expressed in oral carcinogenesis. J Oral Pathol Med: Off Publ Int Assoc Oral Pathol Am Acad Oral Pathol 45(10):746–752. https://doi.org/10.1111/jop.12440

    Article  CAS  Google Scholar 

  32. Harsha C, Banik K, Ang HL, Girisa S, Vikkurthi R, Parama D et al (2020) Targeting AKT/mTOR in oral cancer: mechanisms and advances in clinical trials. Int J Mol Sci. https://doi.org/10.3390/ijms21093285

    Article  PubMed  PubMed Central  Google Scholar 

  33. Li X, Mak VCY, Zhou Y, Wang C, Wong ESY, Sharma R et al (2019) Deregulated Gab2 phosphorylation mediates aberrant AKT and STAT3 signaling upon PIK3R1 loss in ovarian cancer. Nat Commun 10(1):716. https://doi.org/10.1038/s41467-019-08574-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gkouveris I, Nikitakis N, Sklavounou A (2020) p38 expression and modulation of STAT3 signaling in oral cancer. Pathol Oncol Res: POR 26(1):183–192. https://doi.org/10.1007/s12253-018-0405-9

    Article  CAS  PubMed  Google Scholar 

  35. Hu X, Li J, Fu M, Zhao X, Wang W (2021) The JAK/STAT signaling pathway: from bench to clinic. Signal Transduct Target Ther 6(1):402. https://doi.org/10.1038/s41392-021-00791-1

    Article  PubMed  PubMed Central  Google Scholar 

  36. He JC, Husain M, Sunamoto M, D’Agati VD, Klotman ME, Iyengar R et al (2004) Nef stimulates proliferation of glomerular podocytes through activation of Src-dependent Stat3 and MAPK1,2 pathways. J Clin Investig 114(5):643–651. https://doi.org/10.1172/jci21004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pramanik KK, Mishra R (2022) ERK-mediated upregulation of matrix metalloproteinase-2 promotes the invasiveness in human oral squamous cell carcinoma (OSCC). Exp Cell Res 411(1):112984. https://doi.org/10.1016/j.yexcr.2021.112984

    Article  CAS  PubMed  Google Scholar 

  38. Lui VW, Hedberg ML, Li H, Vangara BS, Pendleton K, Zeng Y et al (2013) Frequent mutation of the PI3K pathway in head and neck cancer defines predictive biomarkers. Cancer Discov 3(7):761–769. https://doi.org/10.1158/2159-8290.Cd-13-0103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Xu J, Chen Y, Yang R, Zhou T, Ke W, Si Y et al (2020) Cucurbitacin B inhibits gastric cancer progression by suppressing STAT3 activity. Arch Biochem Biophys 684:108314. https://doi.org/10.1016/j.abb.2020.108314

    Article  CAS  PubMed  Google Scholar 

  40. Zhang H, Zhao B, Wei H, Zeng H, Sheng D, Zhang Y (2022) Cucurbitacin B controls M2 macrophage polarization to suppresses metastasis via targeting JAK-2/STAT3 signalling pathway in colorectal cancer. J Ethnopharmacol 287:114915. https://doi.org/10.1016/j.jep.2021.114915

    Article  CAS  PubMed  Google Scholar 

  41. Jin ZQ, Hao J, Yang X, He JH, Liang J, Yuan JW et al (2018) Higenamine enhances the antitumor effects of cucurbitacin B in breast cancer by inhibiting the interaction of AKT and CDK2. Oncol Rep 40(4):2127–2136. https://doi.org/10.3892/or.2018.6629

    Article  CAS  PubMed  Google Scholar 

  42. Zhou J, Zhao T, Ma L, Liang M, Guo YJ, Zhao LM (2017) Cucurbitacin B and SCH772984 exhibit synergistic anti-pancreatic cancer activities by suppressing EGFR, PI3K/Akt/mTOR, STAT3 and ERK signaling. Oncotarget 8(61):103167–103181. https://doi.org/10.18632/oncotarget.21704

    Article  PubMed  PubMed Central  Google Scholar 

  43. Dey S, Singh AK, Singh AK, Rawat K, Banerjee J, Agnihotri V et al (2022) Critical pathways of oral squamous cell carcinoma: molecular biomarker and therapeutic intervention. Med Oncol (Northwood, London, England) 39(3):30. https://doi.org/10.1007/s12032-021-01633-4

    Article  CAS  Google Scholar 

  44. Arcaro A, Aubert M, Espinosa del Hierro ME, Khanzada UK, Angelidou S, Tetley TD et al (2007) Critical role for lipid raft-associated Src kinases in activation of PI3K-Akt signalling. Cell Signal 19(5):1081–1092. https://doi.org/10.1016/j.cellsig.2006.12.003

    Article  CAS  PubMed  Google Scholar 

  45. Kurman Y, Kiliccioglu I, Dikmen AU, Esendagli G, Bilen CY, Sozen S et al (2020) Cucurbitacin B and cisplatin induce the cell death pathways in MB49 mouse bladder cancer model. Exp Biol Med (Maywood) 245(9):805–814. https://doi.org/10.1177/1535370220917367

    Article  CAS  PubMed  Google Scholar 

  46. Ueno M, Kariya R, Sittithumcharee G, Okada S (2021) Cucurbitacin B induces apoptosis of primary effusion lymphoma via disruption of cytoskeletal organization. Phytomed: Int J Phytother Phytopharmacol 85:153545. https://doi.org/10.1016/j.phymed.2021.153545

    Article  CAS  Google Scholar 

  47. Liang J, Zhang XL, Yuan JW, Zhang HR, Liu D, Hao J et al (2019) Cucurbitacin B inhibits the migration and invasion of breast cancer cells by altering the biomechanical properties of cells. Phytother Res: PTR 33(3):618–630. https://doi.org/10.1002/ptr.6250

    Article  CAS  PubMed  Google Scholar 

  48. Yuan R, Fan Q, Liang X, Han S, He J, Wang QQ et al (2022) Cucurbitacin B inhibits TGF-β1-induced epithelial-mesenchymal transition (EMT) in NSCLC through regulating ROS and PI3K/Akt/mTOR pathways. Chin Med 17(1):24. https://doi.org/10.1186/s13020-022-00581-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Luo TT, Lu Y, Yan SK, Xiao X, Rong XL, Guo J (2020) Network pharmacology in research of Chinese medicine formula: methodology, application and prospective. Chin J Integr Med 26(1):72–80. https://doi.org/10.1007/s11655-019-3064-0

    Article  CAS  PubMed  Google Scholar 

  50. Li S (2021) Network pharmacology evaluation method guidance—draft. World J Tradit Chin Med 7:146–154

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Program of Shanxi Province (Grant No. 202103021223235).

Author information

Authors and Affiliations

Authors

Contributions

ZY contributed to Conceptualization, Methodology, Validation, Investigation, Formal analysis, Writing of the original draft, Visualization, and Writing, reviewing, & editing of the manuscript. SL contributed to Conceptualization, Methodology, Validation, and Investigation. LJ contributed to Conceptualization, Validation, and Methodology. YC contributed to Conceptualization and Writing, reviewing, & editing of the manuscript. WY contributed to Data curation and Writing, reviewing, & editing of the manuscript. RG contributed to Data curation and Writing, reviewing, & editing of the manuscript. FZ contributed to Conceptualization, Supervision, Project administration, and Writing, reviewing, & editing of the manuscript.

Corresponding author

Correspondence to Fang Zhang.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 560 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Z., Liang, S., Ji, L. et al. Network pharmacological analysis and experimental study of cucurbitacin B in oral squamous cell carcinoma. Mol Divers (2023). https://doi.org/10.1007/s11030-023-10713-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11030-023-10713-8

Keywords

Navigation