Skip to main content

Advertisement

Log in

Probing the molecular mechanisms of α-synuclein inhibitors unveils promising natural candidates through machine-learning QSAR, pharmacophore modeling, and molecular dynamics simulations

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Parkinson’s disease is characterized by a multifactorial nature that is linked to different pathways. Among them, the abnormal deposition and accumulation of α-synuclein fibrils is considered a neuropathological hallmark of Parkinson’s disease. Several synthetic and natural compounds have been tested for their potency to inhibit the aggregation of α-synuclein. However, the molecular mechanisms responsible for the potency of these drugs to further rationalize their development and optimization are yet to be determined. To enhance our understanding of the structural requirements necessary for modulating the aggregation of α-synuclein fibrils, we retrieved a large dataset of α-synuclein inhibitors with their reported potency from the ChEMBL database to explore their chemical space and to generate QSAR models for predicting new bioactive compounds. The best performing QSAR model was applied to the LOTUS natural products database to screen for potential α-synuclein inhibitors followed by a pharmacophore design using the representative compounds sampled from each cluster in the ChEMBL dataset. Five natural products were retained after molecular docking studies displaying a binding affinity of − 6.0 kcal/mol or lower. ADMET analysis revealed satisfactory properties and predicted that all the compounds can cross the blood–brain barrier and reach their target. Finally, molecular dynamics simulations demonstrated the superior stability of LTS0078917 compared to the clinical candidate, Anle138b. We found that LTS0078917 shows promise in stabilizing the α-synuclein monomer by specifically binding to its hairpin-like coil within the N-terminal region. Our dynamic analysis of the inhibitor-monomer complex revealed a tendency towards a more compact conformation, potentially reducing the likelihood of adopting an elongated structure that favors the formation and aggregation of pathological oligomers. These findings offer valuable insights for the development of novel α-synuclein inhibitors derived from natural sources.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Dugger BN, Dickson DW (2017) Pathology of neurodegenerative diseases. Cold Spring Harb Perspect Biol 9(7):a028035

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hardy J, Gwinn-Hardy K (1998) Genetic classification of primary neurodegenerative disease. Science 282(5391):1075–1079

    Article  CAS  PubMed  Google Scholar 

  3. Goetz CG, Emre M, Dubois B (2008) Parkinson’s disease dementia: definitions, guidelines, and research perspectives in diagnosis. Ann Neurol 64(S2):S81–S92

    Article  PubMed  Google Scholar 

  4. Dorsey EA, Constantinescu R, Thompson JP, Biglan KM, Holloway RG, Kieburtz K, Tanner CM (2007) Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology 68(5):384–386

    Article  CAS  PubMed  Google Scholar 

  5. Wanneveich M, Moisan F, Jacqmin-Gadda H, Elbaz A, Joly P (2018) Projections of prevalence, lifetime risk, and life expectancy of Parkinson’s disease (2010–2030) in France. Mov Disord 33(9):1449–1455

    Article  PubMed  Google Scholar 

  6. Martinez-Martin P, Rodriguez-Blazquez C, Paz S, Forjaz MJ, Frades-Payo B, Cubo E, ELEP Group (2015) Parkinson symptoms and health related quality of life as predictors of costs: a longitudinal observational study with linear mixed model analysis. PLoS ONE 10(12):e0145310

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chaudhuri KR, Healy DG, Schapira AH (2006) Non-motor symptoms of Parkinson’s disease: diagnosis and management. Lancet Neurol 5(3):235–245

    Article  PubMed  Google Scholar 

  8. Jenner P (2003) Oxidative stress in Parkinson’s disease. Ann Neurol 53(S3):S26–S38

    Article  CAS  PubMed  Google Scholar 

  9. Kalia LV, Kalia SK, Lang AE (2015) Disease-modifying strategies for Parkinson’s disease. Mov Disord 30(11):1442–1450

    Article  CAS  PubMed  Google Scholar 

  10. Olanow CW, Agid Y, Mizuno Y, Albanese A, Bonucelli U, Damier P, Stocchi F (2004) Levodopa in the treatment of Parkinson’s disease: current controversies. Mov Disord 19(9):997–1005

    Article  PubMed  Google Scholar 

  11. Finberg JP (2019) Inhibitors of MAO-B and COMT: their effects on brain dopamine levels and uses in Parkinson’s disease. J Neural Transm 126(4):433–448

    Article  PubMed  Google Scholar 

  12. Szabo N, Kincses ZT, Vecsei L (2011) Novel therapy in Parkinson’s disease: adenosine A2A receptor antagonists. Expert Opin Drug Metab Toxicol 7(4):441–455

    Article  PubMed  Google Scholar 

  13. Vanle B, Olcott W, Jimenez J, Bashmi L, Danovitch I, IsHak WW (2018) NMDA antagonists for treating the non-motor symptoms in Parkinson’s disease. Transl Psychiatry 8(1):1–15

    Article  CAS  Google Scholar 

  14. Amer DA, Irvine GB, El-Agnaf O (2006) Inhibitors of α-synuclein oligomerization and toxicity: a future therapeutic strategy for Parkinson’s disease and related disorders. Exp Brain Res 173(2):223–233

    Article  CAS  PubMed  Google Scholar 

  15. Rangasamy SB, Soderstrom K, Bakay RA, Kordower JH (2010) Neurotrophic factor therapy for Parkinson’s disease. Prog Brain Res 184:237–264

    Article  CAS  PubMed  Google Scholar 

  16. Boulaamane Y, Ibrahim MA, Britel MR, Maurady A (2022) In silico studies of natural product-like caffeine derivatives as potential MAO-B inhibitors/AA2AR antagonists for the treatment of Parkinson’s disease. J Integr Bioinform. 19(4):20210027

    Article  PubMed  PubMed Central  Google Scholar 

  17. Oliveira L, Gasser T, Edwards R, Zweckstetter M, Melki R, Stefanis L, Outeiro TF (2021) Alpha-synuclein research: defining strategic moves in the battle against Parkinson’s disease. Npj Parkinson’s Dis 7(1):1–23

    Google Scholar 

  18. Das S, Pukala TL, Smid SD (2018) Exploring the structural diversity in inhibitors of α-synuclein amyloidogenic folding, aggregation, and neurotoxicity. Front Chem 6:181

    Article  PubMed  PubMed Central  Google Scholar 

  19. Cheng F, Vivacqua G, Yu S (2011) The role of alpha-synuclein in neurotransmission and synaptic plasticity. J Chem Neuroanat 42(4):242–248

    Article  CAS  PubMed  Google Scholar 

  20. Takeda A, Mallory M, Sundsmo M, Honer W, Hansen L, Masliah E (1998) Abnormal accumulation of NACP/alpha-synuclein in neurodegenerative disorders. Am J Pathol 152(2):367

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Gibb WR, Lees A (1988) The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson’s disease. J Neurol Neurosurg Psychiatry 51(6):745–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vicario M, Cieri D, Brini M, Calì T (2018) The close encounter between alpha-synuclein and mitochondria. Front Neurosci 12:388

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wagner J, Ryazanov S, Leonov A, Levin J, Shi S, Schmidt F, Giese A (2013) Anle138b: a novel oligomer modulator for disease-modifying therapy of neurodegenerative diseases such as prion and Parkinson’s disease. Acta Neuropathologica 125(6):795–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Price DL, Koike MA, Khan A, Wrasidlo W, Rockenstein E, Masliah E, Bonhaus D (2018) The small molecule alpha-synuclein misfolding inhibitor, NPT200-11, produces multiple benefits in an animal model of Parkinson’s disease. Sci Rep 8(1):1–12

    Article  Google Scholar 

  25. Ulmer TS, Bax A, Cole NB, Nussbaum RL (2005) Structure and dynamics of micelle-bound human α-synuclein. J Biol Chem 280(10):9595–9603

    Article  CAS  PubMed  Google Scholar 

  26. Cooper AA, Gitler AD, Cashikar A, Haynes CM, Hill KJ, Bhullar B, Lindquist S (2006) α-Synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson’s models. Science 313(5785):324–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Amos SBT, Schwarz TC, Shi J, Cossins BP, Baker TS, Taylor RJ, Sansom MS (2021) Membrane interactions of α-Synuclein revealed by multiscale molecular dynamics simulations, Markov state models, and NMR. J Phys Chem B 125(11):2929–2941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kondratyev MS, Rudnev VR, Nikolsky KS, Petrovsky DV, Kulikova LI, Malsagova KA, Kaysheva AL (2022) In silico study of the interactions of anle138b isomer, an inhibitor of amyloid aggregation, with partner proteins. Int J Mol Sci 23(24):16096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Baul HS, Rajiniraja M (2018) Favorable binding of quercetin to α-synuclein as potential target in Parkinson disease: an insilico approach. Res J Pharm Technol 11(1):203–206

    Article  Google Scholar 

  30. Zhu M, Han S, Fink AL (2013) Oxidized quercetin inhibits α-synuclein fibrillization. Biochimica et Biophysica Acta (BBA) 1830(4):2872–2881

    Article  CAS  PubMed  Google Scholar 

  31. Ahn TB, Jeon BS (2015) The role of quercetin on the survival of neuron-like PC12 cells and the expression of α-synuclein. Neural Regen Res 10(7):1113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bisi N, Feni L, Peqini K, Pérez-Peña H, Ongeri S, Pieraccini S, Pellegrino S (2021) α-Synuclein: an all-inclusive trip around its structure, influencing factors and applied techniques. Front Chem 9:666585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A, Overington JP (2012) ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic acids Res 40(D1):D1100–D1107

    Article  CAS  PubMed  Google Scholar 

  34. Bajusz D, Rácz A, Héberger K (2015) Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations? J Cheminform 7(1):1–13

    Article  CAS  Google Scholar 

  35. Landrum, G. (2013). RDKit: a software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum

  36. Capecchi A, Probst D, Reymond JL (2020) One molecular fingerprint to rule them all: drugs, biomolecules, and the metabolome. J Cheminform 12(1):1–15

    Article  Google Scholar 

  37. Rutz A, Sorokina M, Galgonek J, Mietchen D, Willighagen E, Gaudry A, Allard PM (2022) The LOTUS initiative for open knowledge management in natural products research. elife 11:e70780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lipinski CA (2004) Lead-and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol 1(4):337–341

    Article  CAS  PubMed  Google Scholar 

  39. Sander T, Freyss J, von Korff M, Rufener C (2015) DataWarrior: an open-source program for chemistry aware data visualization and analysis. J Chem Inf Model 55(2):460–473

    Article  CAS  PubMed  Google Scholar 

  40. Sunseri J, Koes DR (2016) Pharmit: interactive exploration of chemical space. Nucleic Acids Res 44(W1):W442–W448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Huey R, Morris GM, Forli S (2012) Using AutoDock 4 and AutoDock vina with AutoDockTools: a tutorial. Scripps Res Inst Mol Graphics Lab 10550:92037

    Google Scholar 

  42. Volkamer A, Griewel A, Grombacher T, Rarey M (2010) Analyzing the topology of active sites: on the prediction of pockets and subpockets. J Chem Inf Model 50(11):2041–2052

    Article  CAS  PubMed  Google Scholar 

  43. Volkamer A, Kuhn D, Grombacher T, Rippmann F, Rarey M (2012) Combining global and local measures for structure-based druggability predictions. J Chem Inf Model 52(2):360–372

    Article  CAS  PubMed  Google Scholar 

  44. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Bhakhar KA, Gajjar ND, Bodiwala KB, Sureja DK, Dhameliya TM (2021) Identification of anti-mycobacterial agents against mmpL3: virtual screening, ADMET analysis and MD simulations. J Mol Struct 1244:130941

    Article  CAS  Google Scholar 

  46. Salentin S, Schreiber S, Haupt VJ, Adasme MF, Schroeder M (2015) PLIP: fully automated protein–ligand interaction profiler. Nucleic Acids Res 43(W1):W443–W447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Norinder U, Bergström CA (2006) Prediction of ADMET properties. Chem Enab Drug Discov 1(9):920–937

    CAS  Google Scholar 

  48. Cheng F, Li W, Liu G, Tang Y (2013) In silico ADMET prediction: recent advances, current challenges and future trends. Curr Top Med Chem 13(11):1273–1289

    Article  CAS  PubMed  Google Scholar 

  49. Rao VS, Srinivas K (2011) Modern drug discovery process: an in silico approach. J Bioinform Sequence Anal 2(5):89–94

    Google Scholar 

  50. Pires DE, Blundell TL, Ascher DB (2015) pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem 58(9):4066–4072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sureja DK, Shah AP, Gajjar ND, Jadeja SB, Bodiwala KB, Dhameliya TM (2022) In-silico computational investigations of antiviral Lignan derivatives as potent inhibitors of SARS CoV-2. ChemistrySelect 7(28):e202202069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) GROMACS: fast, flexible, and free. J Comput Chem 26(16):1701–1718

    Article  PubMed  Google Scholar 

  53. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1:19–25

    Article  Google Scholar 

  54. Jo S, Kim T, Iyer VG, Im W (2008) CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem 29(11):1859–1865

    Article  CAS  PubMed  Google Scholar 

  55. Vanommeslaeghe K, MacKerell AD Jr (2012) Automation of the CHARMM General Force Field (CGenFF) I: bond perception and atom typing. J Chem Inf Model 52(12):3144–3154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Baammi S, Daoud R, El Allali A (2023) Assessing the effect of a series of mutations on the dynamic behavior of phosphite dehydrogenase using molecular docking, molecular dynamics and quantum mechanics/molecular mechanics simulations. J Biomol Struct Dyn 41(9):4154–4166

    Article  CAS  PubMed  Google Scholar 

  57. Gumbart J, Khalili-Araghi F, Sotomayor M, Roux B (2012) Constant electric field simulations of the membrane potential illustrated with simple systems. Biochimica et Biophysica Acta (BBA) 1818(2):294–302

    Article  CAS  PubMed  Google Scholar 

  58. Bhandari S, Agrwal A, Kasana V, Tandon S, Boulaamane Y, Maurady A (2022) β-amino carbonyl derivatives: synthesis, molecular docking, ADMET, molecular dynamic and herbicidal studies. ChemistrySelect 7(48):e202201572

    Article  CAS  Google Scholar 

  59. Boulaamane Y, Ahmad I, Patel H, Das N, Britel MR, Maurady A (2023) Structural exploration of selected C6 and C7-substituted coumarin isomers as selective MAO-B inhibitors. J Biomol Struct Dyn 41(6):2326–2340

    Article  CAS  PubMed  Google Scholar 

  60. Vegad UG, Gajjar ND, Nagar PR, Chauhan SP, Pandya DJ, Dhameliya TM (2023) In silico screening, ADMET analysis and MD simulations of phytochemicals of Onosma bracteata wall as SARS CoV-2 inhibitors. 3 Biotech 13(7):221

    Article  PubMed  PubMed Central  Google Scholar 

  61. Dhameliya TM, Nagar PR, Gajjar ND (2022) Systematic virtual screening in search of SARS CoV-2 inhibitors against spike glycoprotein: pharmacophore screening, molecular docking, ADMET analysis and MD simulations. Mol Divers 26(5):2775–2792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Firth NC, Brown N, Blagg J (2012) Plane of best fit: a novel method to characterize the three-dimensionality of molecules. J Chem Inf Model 52(10):2516–2525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sosnin S, Karlov D, Tetko IV, Fedorov MV (2018) Comparative study of multitask toxicity modeling on a broad chemical space. J Chem Inf Model 59(3):1062–1072

    Article  Google Scholar 

  64. Medina-Franco JL, Martínez-Mayorga K, Giulianotti MA, Houghten RA, Pinilla C (2008) Visualization of the chemical space in drug discovery. Curr Comput Aided Drug Des 4(4):322–333

    Article  CAS  Google Scholar 

  65. Shahapure KR, Nicholas C (2020) Cluster quality analysis using silhouette score. In: 2020 IEEE 7th international conference on data science and advanced analytics (DSAA), pp 747–748. IEEE

  66. Rousseeuw PJ (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20:53–65

  67. Rosén J, Gottfries J, Muresan S, Backlund A, Oprea TI (2009) Novel chemical space exploration via natural products. J Med Chem 52(7):1953–1962

    Article  PubMed  PubMed Central  Google Scholar 

  68. Pollastri MP (2010) Overview on the rule of five. Curr Protoc Pharmacol 49(1):9–12

    Google Scholar 

  69. Zhang L, Tan J, Han D, Zhu H (2017) From machine learning to deep learning: progress in machine intelligence for rational drug discovery. Drug Discov Today 22(11):1680–1685

    Article  PubMed  Google Scholar 

  70. Yang J, Hu J, Zhang G, Qin L, Wen H, Tang Y (2021) Pharmacophore modeling and 3D-QSAR study for the design of novel α-synuclein aggregation inhibitors. J Mol Model 27(9):260

    Article  CAS  PubMed  Google Scholar 

  71. Vittorio S, Adornato I, Gitto R, Peña-Díaz S, Ventura S, De Luca L (2020) Rational design of small molecules able to inhibit α-synuclein amyloid aggregation for the treatment of Parkinson’s disease. J Enzyme Inhib Med Chem 35(1):1727–1735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612

    Article  CAS  PubMed  Google Scholar 

  73. Vats S, Kondabala R, Saxena S (2022) Identification of alpha-Synuclein disaggregator from Camellia sp. insight of molecular docking and molecular dynamics simulations. ChemistrySelect 7(10):e202104131

    Article  CAS  Google Scholar 

  74. Mohankumar T, Chandramohan V, Lalithamba HS, Jayaraj RL, Kumaradhas P, Sivanandam M, Elangovan N (2020) Design and molecular dynamic investigations of 7, 8-dihydroxyflavone derivatives as potential neuroprotective agents against alpha-synuclein. Sci Rep 10(1):599

    Article  PubMed  Google Scholar 

  75. Boulaamane Y, Kandpal P, Chandra A, Britel MR, Maurady A (2023) Chemical library design, QSAR modeling and molecular dynamics simulations of naturally occurring coumarins as dual inhibitors of MAO-B and AChE. J Biomol Struct Dyn 1–18

  76. Kufareva I, Abagyan R (2012) Methods of protein structure comparison. Homol Model 231–257

  77. Taidi L, Maurady A, Britel MR (2022) Molecular docking study and molecular dynamic simulation of human cyclooxygenase-2 (COX-2) with selected eutypoids. J Biomol Struct Dyn 40(3):1189–1204

    Article  CAS  PubMed  Google Scholar 

  78. Durham E, Dorr B, Woetzel N, Staritzbichler R, Meiler J (2009) Solvent accessible surface area approximations for rapid and accurate protein structure prediction. J Mol Model 15:1093–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Haider S, Parkinson GN, Neidle S (2008) Molecular dynamics and principal components analysis of human telomeric quadruplex multimers. Biophys J 95(1):296–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. David CC, Jacobs DJ (2014) Principal component analysis: a method for determining the essential dynamics of proteins. Protein Dyn 193–226

Download references

Acknowledgements

Kailash Jangid gratefully acknowledge NSM for the access to ‘PARAM Seva Facility’ at IIT, Hyderabad, which is implemented by C-DAC and supported by the ministry of Electronics and Information Technology (MeitY) and Department of Science and Technology (DST), Government of India.

Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Contributions

YB suggested the idea, wrote the main manuscript text and performed the data analysis, KJ performed the MD simulations, MRB and AM supervised the work.

Corresponding author

Correspondence to Amal Maurady.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boulaamane, Y., Jangid, K., Britel, M.R. et al. Probing the molecular mechanisms of α-synuclein inhibitors unveils promising natural candidates through machine-learning QSAR, pharmacophore modeling, and molecular dynamics simulations. Mol Divers (2023). https://doi.org/10.1007/s11030-023-10691-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11030-023-10691-x

Keywords

Navigation