Skip to main content
Log in

Chrysin based pyrimidine-piperazine hybrids: design, synthesis, in vitro antimicrobial and in silico E. coli topoisomerase II DNA gyrase efficacy

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Ten chrysin-based pyrimidine-piperazine hybrids have been evaluated in vitro for antimicrobial activity against eleven bacterial and two fungal strains. All compounds 5a–j exhibited moderate to good inhibition, with MIC values ranging from 6.25 to 250 µg/ml. At 6.25 µg/ml and 12.5 µg/ml MIC values, respectively, compounds 5b and 5h demonstrated the most promising potency against E. coli, outperforming ampicillin, chloramphenicol, and ciprofloxacin. None of the substances had the same level of action as norfloxacin. 5a, 5d, 5g, 5h, and 5i have exhibited superior antifungal efficacy than Griseofulvin against C. albicans with 250 µg/ml MIC. All the compounds were also individually docked into the E. coli DNA gyrase ATP binding site (PDB ID: 1KZN) and CYP51 inhibitor (PDB ID: 5V5Z). The most active compound, 5h and 5g displayed a Glide docking score of − 5.97 kcal/mol and − 10.99 kcal/mol against DNA gyrase and 14α-demethylase enzyme CYP51 respectively. Potent compounds 5b, 5h, and 5g may be used to design new, innovative antimicrobial agents, according to in vitro, ADMET, and in silico biological efficacy analyses.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All the spectra are provided in the supplementary information.

References

  1. Zala AR, Rajani DP, Kumari P (2022) Synthesis, molecular docking, ADME study, and antimicrobial potency of piperazine based cinnamic acid bearing coumarin moieties as a DNA gyrase inhibitor. J Biochem Mol Toxicol 37:e23231. https://doi.org/10.1002/jbt.23231

    Article  CAS  PubMed  Google Scholar 

  2. Champoux JJ (2001) DNA TOPOISOMERASES: structure, function, and mechanism. Annu Rev Biochem 70:369–413. https://doi.org/10.1146/annurev.biochem.70.1.369

    Article  CAS  PubMed  Google Scholar 

  3. Mayer C, Janin YL (2014) Non-quinolone inhibitors of bacterial type IIA topoisomerases: a feat of bioisosterism. Chem Rev 114:2313–2342. https://doi.org/10.1021/cr4003984

    Article  CAS  PubMed  Google Scholar 

  4. Patel KB, Kumari P (2022) Anticancer activity and docking study of flavone derivatives as peroxisome proliferator-activated receptorγ inhibitors. Struct Chem 33:1835–1851. https://doi.org/10.1007/s11224-022-01926-y

    Article  CAS  Google Scholar 

  5. Rani J, Kumar S, Saini M et al (2016) Biological potential of pyrimidine derivatives in a new era. Res Chem Intermed 42:6777–6804. https://doi.org/10.1007/s11164-016-2525-8

    Article  CAS  Google Scholar 

  6. Tomma JH, Khazaal MS, Al-Dujaili AH (2014) Synthesis and characterization of novel Schiff bases containing pyrimidine unit. Arab J Chem 7:157–163. https://doi.org/10.1016/j.arabjc.2013.08.024

    Article  CAS  Google Scholar 

  7. Bhalgat CM, Irfan Ali M, Ramesh B, Ramu G (2014) Novel pyrimidine and its triazole fused derivatives: synthesis and investigation of antioxidant and anti-inflammatory activity. Arab J Chem 7:986–993. https://doi.org/10.1016/j.arabjc.2010.12.021

    Article  CAS  Google Scholar 

  8. Guo YC, Li J, Ma JL et al (2015) Synthesis and antitumor activity of α-aminophosphonate derivatives containing thieno[2,3-d]pyrimidines. Chin Chem Lett 26:755–758. https://doi.org/10.1016/j.cclet.2015.03.026

    Article  CAS  Google Scholar 

  9. Mallikarjunaswamy C, Mallesha L, Bhadregowda DG, Pinto O (2017) Studies on synthesis of pyrimidine derivatives and their antimicrobial activity. Arab J Chem 10:S484–S490. https://doi.org/10.1016/j.arabjc.2012.10.008

    Article  CAS  Google Scholar 

  10. Cocco MT, Congiu C, Onnis V, Piras R (2001) Synthesis and antitumor evaluation of 6-thioxo-, 6-oxo-and 2,4-dioxopyrimidine derivatives. Farmaco 56:741–748. https://doi.org/10.1016/S0014-827X(01)01123-5

    Article  CAS  PubMed  Google Scholar 

  11. Tozkoparan B, Ertan M, Kelicen P, meysaDemirdamar R (1999) Synthesis and anti-inflammatory activities of some thiazolo[3,2-a]pyrimidine derivatives. Farmaco 54:588–593. https://doi.org/10.1016/S0014-827X(99)00068-3

    Article  CAS  PubMed  Google Scholar 

  12. Ashour HM, Shaaban OG, Rizk OH, El-Ashmawy IM (2013) Synthesis and biological evaluation of thieno [2′,3′:4,5] pyrimido[1,2-b][1,2,4]triazines and thieno[2,3-d][1,2,4]triazolo[1,5-a] pyrimidines as anti-inflammatory and analgesic agents. Eur J Med Chem 62:341–351. https://doi.org/10.1016/j.ejmech.2012.12.003

    Article  CAS  PubMed  Google Scholar 

  13. Maurya SS, Khan SI, Bahuguna A et al (2017) Synthesis, antimalarial activity, heme binding and docking studies of N-substituted 4-aminoquinoline-pyrimidine molecular hybrids. Eur J Med Chem 129:175–185. https://doi.org/10.1016/j.ejmech.2017.02.024

    Article  CAS  PubMed  Google Scholar 

  14. Anupama B, Chandra Dinda S, Rajendra Prasad Y, Rao V (2012) Synthesis and antimicrobial activity of some new 2, 4, 6-trisubstituted pyrimidines. Int J Res Pharm Chem 2:231–236

    CAS  Google Scholar 

  15. Patel KB, Mukherjee S, Bhatt H et al (2023) Synthesis, docking, and biological investigations of new coumarin-piperazine hybrids as potential antibacterial and anticancer agents. J Mol Struct 1276:134755. https://doi.org/10.1016/j.molstruc.2022.134755

    Article  CAS  Google Scholar 

  16. Patel KB, Kumari P (2022) A review: structure-activity relationship and antibacterial activities of Quinoline based hybrids. J Mol Struct 1268:133634. https://doi.org/10.1016/j.molstruc.2022.133634

    Article  CAS  Google Scholar 

  17. Sarkar A, Kumar KA, Dutta NK et al (2003) Evaluation of in vitro and in vivo antibacterial activity of dobutamine hydrochloride. Indian J Med Microbiol 21:172–178. https://doi.org/10.1016/S0255-0857(21)03067-X

    Article  CAS  PubMed  Google Scholar 

  18. Farhadi F, Khameneh B, Iranshahi M, Iranshahy M (2019) Antibacterial activity of flavonoids and their structure–activity relationship: an update review. Phytother Res 33:13–40. https://doi.org/10.1002/ptr.6208

    Article  CAS  PubMed  Google Scholar 

  19. Frieri M, Kumar K, Boutin A (2017) Antibiotic resistance. J Infect Public Health 10:369–378. https://doi.org/10.1016/j.jiph.2016.08.007

    Article  PubMed  Google Scholar 

  20. Zhou S, Xu D, Wang Z et al (2014) An efficient and convenient synthesis of 4,6-Dichloro-2-methyl-5- nitropyrimidine. Asian J Chem 26:3559–3561. https://doi.org/10.14233/ajchem.2014.16338

    Article  CAS  Google Scholar 

  21. Osmaniye D, Ahmad I, Sağlık BN et al (2022) Design, synthesis and molecular docking and ADME studies of novel hydrazone derivatives for AChE inhibitory, BBB permeability and antioxidant effects. J Biomol Struct Dyn 2022:1–17. https://doi.org/10.1080/07391102.2022.2139762

    Article  CAS  Google Scholar 

  22. Kikiowo B, Ahmad I, Alade AA et al (2022) Molecular dynamics simulation and pharmacokinetics studies of ombuin and quercetin against human pancreatic α-amylase. J Biomol Struct Dyn 2022:1–8. https://doi.org/10.1080/07391102.2022.2155699

    Article  CAS  Google Scholar 

  23. Tabti K, Ahmad I, Zafar I et al (2023) Profiling the structural determinants of pyrrolidine derivative as gelatinases (MMP-2 and MMP-9) inhibitors using in silico approaches. Comput Biol Chem 104:107855. https://doi.org/10.1016/j.compbiolchem.2023.107855

    Article  CAS  PubMed  Google Scholar 

  24. Benjamin I, Louis HO, Ekpen F et al (2022) Modeling the anti-methicillin-resistant Staphylococcus aureus (MRSA) activity of (E)-6-chloro-N2-phenyl-N4-(4-Phenyl-5-(Phenyl Diazinyl)-2λ3, 3 λ2-Thiazol-2-yl)-1, 3, 5-Triazine-2, 4-Diamine. Polycycl Aromat Compd 2022:1–28. https://doi.org/10.1080/10406638.2022.2160773

    Article  CAS  Google Scholar 

  25. Ayipo YO, Ahmad I, Chong CF et al (2023) Carbazole derivatives as promising competitive and allosteric inhibitors of human serotonin transporter: computational pharmacology. J Biomol Struct Dyn 2023:1–22. https://doi.org/10.1080/07391102.2023.2198016

    Article  CAS  Google Scholar 

  26. Patel AB, Patel P, Patel K, Prajapati K (2020) Synthesis of fluorinated piperazinyl substituted quinazolines as potential antibacterial agents. Asian J Org Med Chem 5:227–233. https://doi.org/10.14233/ajomc.2020.ajomc-p284

    Article  Google Scholar 

  27. Friesner RA, Banks JL, Murphy RB et al (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739–1749. https://doi.org/10.1021/jm0306430

    Article  CAS  PubMed  Google Scholar 

  28. Puri S, Ahmad I, Patel H, Kumar K, Juvale K (2023) Evaluation of oxindole derivatives as a potential anticancer agent against breast carcinoma cells: in vitro, in silico, and molecular docking study. Toxicol In Vitro 86:105517. https://doi.org/10.1016/j.tiv.2022.105517

    Article  CAS  PubMed  Google Scholar 

  29. AcarÇevik U, Celik I, İnce U et al (2023) Synthesis, biological evaluation, and molecular modeling studies of new 1, 3, 4-thiadiazole derivatives as potent antimicrobial agents. Chem Biodivers 20:e202201146. https://doi.org/10.1002/cbdv.202201146

    Article  CAS  Google Scholar 

  30. Girase R, Ahmad I, Patel H (2023) Bioisosteric modification of Linezolid identified the potential M. tuberculosis protein synthesis inhibitors to overcome the myelosuppression and serotonergic toxicity associated with Linezolid in the treatment of the multi-drug resistance tuberculosis (MDR-TB). J Biomol Struct Dyn 2023:1–16. https://doi.org/10.1080/07391102.2023.2203254

    Article  CAS  Google Scholar 

  31. Jagatap VR, Ahmad I, Sriram D et al (2023) Isoflavonoid and furanochromone natural products as potential DNA gyrase inhibitors: computational, spectral, and antimycobacterial studies. ACS Omega. https://doi.org/10.1021/acsomega.3c00684

    Article  PubMed  PubMed Central  Google Scholar 

  32. Desai NC, Jadeja DJ, Jethawa AM et al (2023) Design and synthesis of some novel hybrid molecules based on 4-thiazolidinone bearing pyridine-pyrazole scaffolds: molecular docking and molecular dynamics simulations of its major constituent onto DNA gyrase inhibition. Mol Divers 2023:1–17. https://doi.org/10.1007/s11030-023-10612-y

    Article  CAS  Google Scholar 

  33. Sayed HM, Ramadan MA, Salem HH et al (2023) Phytochemical investigation, in silico/in vivo analgesic, and anti-inflammatory assessment of the Egyptian cassia occidentalis L. Steroids. https://doi.org/10.1016/j.steroids.2023.109245

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The Sardar Vallabhbhai National Institute of Technology supported this research. The authors thank Mahrshee laboratory, Darshan health care, and Jaydev chemical for gifting piperazine derivatives. The authors are also thankful to the Micro care laboratory for the in vitro analysis of synthesized compounds. The authors are also grateful to Dr. Hitesh Patel and Gujarat University for the Schrodinger molecular modeling platform for molecular docking studies.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

KBP: Conceptualization, Investigation, Writing—original draft, Drawing—Graphical abstract, and other figures. DR: Formal analysis. IA: Formal analysis. HP: Formal analysis HDP: Provide a platform for computational study. PK: Supervision, Writing—review and editing.

Corresponding author

Correspondence to Premlata Kumari.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethical approval

No animal/human studies were carried out in the present work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2314 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, K.B., Rajani, D., Ahmad, I. et al. Chrysin based pyrimidine-piperazine hybrids: design, synthesis, in vitro antimicrobial and in silico E. coli topoisomerase II DNA gyrase efficacy. Mol Divers (2023). https://doi.org/10.1007/s11030-023-10663-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11030-023-10663-1

Keywords

Navigation