Skip to main content
Log in

Isocyanide-based synthesis of spirorhodanine-cyclopentadiene and spirorhodanine-iminobutenolide conjugates from Winterfeldt’s zwitterions and 5-ylidene rhodanines

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

An ultrasonic-assisted isocyanide-based protocol to access a series of functionalized spirorhodanine-cyclopentadiene and spirorhodanine-iminobutenolide conjugates from alkyl isocyanides and dialkyl acetylenedicarboxylates in the presence of 5-ylidene rhodanines in MeCN, is described. The reaction proceeds via interception of the reactive Winterfeldt’s zwitterions by 5-ylidene rhodanine derivatives. The structures of the target compounds were confirmed by X-ray diffraction studies.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Scheme 2

Similar content being viewed by others

References

  1. Najera C, Beletskaya IP, Yus M (2019) Metal-catalyzed regiodivergent organic reactions. Chem Soc Rev 48:4515–4618. https://doi.org/10.1039/C8CS00872H

    Article  PubMed  CAS  Google Scholar 

  2. Xing J, Zhu W, Ye B, Lu T, Hayashi T, Dou X (2020) Rhodium-catalyzed diverse arylation of 2,5-dihydrofuran: controllable divergent synthesis via four pathways. ACS Catal 10:2958–2963. https://doi.org/10.1021/acscatal.0c00265

    Article  CAS  Google Scholar 

  3. Mason TJ (1997) Ultrasound in synthetic organic chemistry. Chem Soc Rev 26:443–451. https://doi.org/10.1039/CS9972600443

    Article  CAS  Google Scholar 

  4. Nasir Baig RB, Varma RS (2012) Alternative energy input: mechanochemical, microwave and ultrasound-assisted organic synthesis. Chem Soc Rev 41:1559–1584. https://doi.org/10.1039/C1CS15204A

    Article  Google Scholar 

  5. Martínez RF, Cravotto G, Cintas P (2021) Organic sonochemistry: a chemist’s timely perspective on mechanisms and reactivity. J Org Chem 86:13833–13856. https://doi.org/10.1021/acs.joc.1c00805

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. da Silveira Pinto LS, de Souza MVN (2017) Sonochemistry as a general procedure for the synthesis of coumarins, including multigram synthesis. Synthesis 49:2555–2561. https://doi.org/10.1055/s-0036-1590201

    Article  CAS  Google Scholar 

  7. Mermer A (2021) The importance of rhodanine scaffold in medicinal chemistry: a comprehensive overview. Mini Rev Med Chem 21:738–789. https://doi.org/10.2174/1389557521666201217144954

    Article  PubMed  CAS  Google Scholar 

  8. Krithika U, Prabitha P, Mandal SP, Yuvaraj S, Priya D, Wadhwani AD, Kumar BRP (2021) Development of novel rhodanine analogs as anticancer agents: design, synthesis, evaluation and CoMSIA study. Med Chem 17:216–229. https://doi.org/10.2174/1573406416666200610191002

    Article  PubMed  CAS  Google Scholar 

  9. Toumi A, Boudriga S, Hamden K, Sobeh M, Cheurfa M, Askri M, Knorr M, Strohmann C, Brieger L (2021) Synthesis, antidiabetic activity and molecular docking study of rhodanine-substitued spirooxindole pyrrolidine derivatives as novel α-amylase inhibitors. Bioorg Chem 106:104507. https://doi.org/10.1016/j.bioorg.2020.104507

    Article  PubMed  CAS  Google Scholar 

  10. Gentili V, Turri G, Marchetti P, Rizzo S, Schiuma G, Beltrami S, Cristofori V, Illuminati D, Compagnin G, Trapella C, Rizzo R, Bortolotti D, Fantinati A (2022) Synthesis and biological evaluation of novel rhodanine-based structures with antiviral activity towards HHV-6 virus. Bioorg Chem 119:105518. https://doi.org/10.1016/j.bioorg.2021.105518

    Article  PubMed  CAS  Google Scholar 

  11. Tejchman W, Korona-Glowniak I, Malm A, Zylewski M, Suder P (2017) Antibacterial properties of 5-substituted derivatives of rhodanine-3-carboxyalkyl acids. Med Chem Res 26:1316–1324. https://doi.org/10.1007/s00044-017-1852-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Hiesinger K, Dar’in D, Proschak E, Krasavin M (2021) Spirocyclic scaffolds in medicinal chemistry. J Med Chem 64:150–183. https://doi.org/10.1021/acs.jmedchem.0c01473

    Article  PubMed  CAS  Google Scholar 

  13. Zhao AX, Horsfall LE, Hulme AN (2021) New methods for the synthesis of spirocyclic cephalosporin analogues. Molecules 26:6035–6051. https://doi.org/10.3390/molecules26196035

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Sadjadi S, Heravi MM, Nazari N (2016) Isocyanide-based multicomponent reactions in the synthesis of heterocycles. RSC Adv 6:53203–53272. https://doi.org/10.1039/C6RA02143C

    Article  ADS  CAS  Google Scholar 

  15. Wang L, Shi L-X, Liu L, Li Z-X, Xu T, Hao W-J, Li G, Tu S-J, Jiang B (2017) Synthesis of diastereoenriched oxazolo[5,4-b]indoles via catalyst-free multicomponent bicyclizations. J Org Chem 82:3605–3611. https://doi.org/10.1021/acs.joc.7b00129

    Article  PubMed  CAS  Google Scholar 

  16. Xiong Q, Dong S, Chen Y, Liu X, Feng X (2019) Asymmetric synthesis of tetrazole and dihydroisoquinoline derivatives by isocyanide-based multicomponent reactions. Nat Commun 10:2116. https://doi.org/10.1038/s41467-019-09904-5

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  17. Wang Z, Fei Y, Tang C, Cui L, Shen J, Yin K, Shanya Lu, Li J (2021) Diastereoselective synthesis of tetracyclic tetrahydroquinoline derivative enabled by multicomponent reaction of isocyanide, allenoate, and 2-aminochalcone. Org Lett 23:4094–4098. https://doi.org/10.1021/acs.orglett.1c00912

    Article  PubMed  CAS  Google Scholar 

  18. Umar Q, Luo M (2023) A brief review: advancement in the synthesis of amine through the Leuckart reaction. Reactions 4:117–147. https://doi.org/10.3390/reactions4010007

    Article  CAS  Google Scholar 

  19. Qiu G, Ding Q, Wu J (2013) Recent Advances in Isocyanide Insertion Chemistry. Chem Soc Rev 42:5257–5269. https://doi.org/10.1039/C3CS35507A

    Article  PubMed  CAS  Google Scholar 

  20. Winterfeldt E, Schumann D, Dillinger HJ (1969) Additionen an die Dreifachbindung, XI. Struktur und Reaktionen des 2: 1-Adduktes aus Acetylendicarbonester und Isonitrilen. Chem Ber 102:1656–1664. https://doi.org/10.1002/cber.19691020530

    Article  CAS  Google Scholar 

  21. Ghandi M, Zarezadeh N (2013) Three-component one-pot synthesis of quinoline-furan conjugates from acetylenedicarboxylate, isocyanide, and 2-chloroquinoline-3-carbaldehyde. Tetrahedron 69:8668–8674. https://doi.org/10.1016/j.tet.2013.08.009

    Article  CAS  Google Scholar 

  22. Shaabani A, Rezayan AH, Ghasemi S, Sarvary A (2009) A Mild and efficient method for the synthesis of 2,5-dihydro-5-imino-2-methylfuran-3,4-dicarboxylates via an isocyanide-based multicomponent reaction. Tetrahedron Lett 50:1456–1458. https://doi.org/10.1016/j.tetlet.2009.01.069

    Article  CAS  Google Scholar 

  23. Yavari I, Mokhtarporyani-Sanandaj A, Moradi L, Mirzaei A (2008) Reaction of benzoyl chlorides with Huisgen’s Zwitterion: synthesis of functionalized 2,5-dihydro-1H-pyrroles and tetrasubstituted furans. Tetrahedron 64:5221–5225. https://doi.org/10.1016/j.tet.2008.03.044

    Article  CAS  Google Scholar 

  24. Esmaeili AA, Vesalipoor H (2009) Reaction of Isocyanides, Dialkyl Acetylenedicarboxylates, and α-Keto Lactones: Unexpected Participation of an Ester Carbonyl Group in the Isocyanide-based three-component reaction. Synthesis. https://doi.org/10.1055/s-0028-1088042

    Article  Google Scholar 

  25. Gao Q, Hao WJ, Liu F, Tu SJ, Wang SL, Li G, Jiang B (2016) Unexpected isocyanide-based three-component bicyclization for the stereoselective synthesis of densely functionalized pyrano[3,4-c]pyrroles. Chem Commun 52:900–903. https://doi.org/10.1039/C5CC08071A

    Article  CAS  Google Scholar 

  26. Yavari I, Sheikhi S, Taheri Z, Halvagar MRA (2019) diastereoselective synthesis of functionalized spiropyrrolizidine-linked rhodanines. Monatsh Chem 150:1825–1831. https://doi.org/10.1007/s00706-019-02485-5

    Article  CAS  Google Scholar 

  27. Yavari I, Naeimabadi M, Halvagar MRA (2018) diastereoselective synthesis of functionalized bis-spirorhodanine-linked cyclopentanes via C(sp3)–H activation. Tetrahedron 74:4145–4150. https://doi.org/10.1016/j.tet.2018.06.029

    Article  CAS  Google Scholar 

  28. Yavari I, Taheri Z, Naeimabadi M, Bahemat S, Halvagar MR (2017) A convenient synthesis of tetrasubstituted pyrazoles from nitrile imines and 2-(thioxothiazolidin-5-ylidene)acetates. Synlett 29:918–921. https://doi.org/10.1055/s-0036-1591921

    Article  CAS  Google Scholar 

  29. Su S, Li C, Jia X, Li J (2014) Isocyanide-based multicomponent reactions: concise synthesis of spirocyclic oxindoles with molecular complexity by using a [1,5]-hydrogen shift as the key step. Chem A Eur J 20:5905–5909. https://doi.org/10.1002/chem.201402576

    Article  CAS  Google Scholar 

  30. Sabouri N, Mahdavinia GH, Notash B (2016) A synthesis of spirofuran-indenoquinoxalines via isocyanid-based one-pot four-component reaction. Chin Chem Lett 27:1040–1043. https://doi.org/10.1016/j.cclet.2016.03.015

    Article  CAS  Google Scholar 

  31. Rostamnia S, Lamei K (2011) A rapid, catalyst-free, three-component synthesis of rhodanines in water using ultrasound. Synthesis. https://doi.org/10.1055/s-0030-1260158

  32. CCDC-2052500 (4a) and CCDC-2060491 (9g) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre. https://www.ccdc.cam.ac.uk/getstructures

  33. Eliel EL, Wilen SH, Mander LN (1993) Stereochemistry of organic compounds. Wiley, New York, pp 569–570

    Google Scholar 

  34. Knight DW (1994) Synthetic approaches to butenolides. Contemp Org Synth 1:287–315. https://doi.org/10.1039/CO9940100287

    Article  CAS  Google Scholar 

  35. Yadav P, Pratap R, Ram VJ (2020) Natural and synthetic spirobutenolides and spirobutyrolactones. Asian J Org Chem 9:1377–1409. https://doi.org/10.1039/D2QO00312K

    Article  CAS  Google Scholar 

  36. Nicolaou KC, Edmonds DJ, Bulger PG (2006) Cascade reactions in total synthesis. Angew Chem Int Ed 45:7134–7186. https://doi.org/10.1002/anie.200601872

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Research Council of Tarbiat Modares University for supporting this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors wrote the main manuscript text and prepared figures . All authors reviewed the manuscript.

Corresponding author

Correspondence to Issa Yavari.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5530 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yavari, I., Sheikhi, S. & Taheri, Z. Isocyanide-based synthesis of spirorhodanine-cyclopentadiene and spirorhodanine-iminobutenolide conjugates from Winterfeldt’s zwitterions and 5-ylidene rhodanines. Mol Divers 28, 143–157 (2024). https://doi.org/10.1007/s11030-023-10635-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-023-10635-5

Keywords

Navigation