Skip to main content

Advertisement

Log in

A structure-based virtual high-throughput screening, molecular docking, molecular dynamics and MM/PBSA study identified novel putative drug-like dual inhibitors of trypanosomal cruzain and rhodesain cysteine proteases

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Virtual screening a collection of ~ 25,000 ChemBridge molecule collection identified two nitrogenous heterocyclic molecules, 12 and 15, with potential dual inhibitory properties against trypanosomal cruzain and rhodesain cysteine proteases. Similarity search in DrugBank found the two virtual hits with novel chemical structures with unreported anti-trypanosomal activities. Investigations into the binding mechanism by molecular dynamics simulations for 100 ns revealed the molecules were able to occupy the binding sites and stabilise the protease complexes. Binding affinities calculated using the MM/PBSA method for the last 20 ns showed that the virtual hits have comparable binding affinities to other known inhibitors from literature suggesting both molecules as promising scaffolds with dual cruzain and rhodesain inhibition properties, i.e. 12 has predicted ΔGbind values of − 38.1 and − 38.2 kcal/mol to cruzain and rhodesain, respectively, and 15 has predicted ΔGbind values of − 34.4 and − 25.8 kcal/mol to rhodesain. Per residue binding free energy decomposition studies and visual inspection at 100 ns snapshots revealed hydrogen bonding and non-polar attractions with important amino acid residues that contributed to the ΔGbind values. The interactions are similar to those previously reported in the literature. The overall ADMET predictions for the two molecules were favourable for drug development with acceptable pharmacokinetic profiles and adequate oral bioavailability.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All data generated from this work is included in this published article and supplementary information. Any materials related to the work may be requested from the corresponding author.

Code availability

Not applicable.

References

  1. Baker CH, Welburn SC (2018) The long wait for a new drug for human African Trypanosomiasis. Trends Parasitol 34:818–27. https://doi.org/10.1016/j.pt.2018.08.006

    Article  Google Scholar 

  2. World Health Organization (2021) Trypanosomiasis, human African (sleeping sickness). https://www.who.int/news-room/fact-sheets/detail/trypanosomiasis-human-african-(sleeping-sickness). Accessed 15 December 2021

  3. De Koning PH (2020) the drugs of sleeping sickness: their mechanisms of action and resistance, and a brief history. Trop Med Infect Dis 5(1):14. https://doi.org/10.3390/tropicalmed5010014

    Article  Google Scholar 

  4. Sajid M, McKerrow JH (2002) Cysteine proteases of parasitic organisms. Mol Biochem Parasitol 120:1–21. https://doi.org/10.1016/S0166-6851(01)00438-8

    Article  CAS  Google Scholar 

  5. Ferreira LG, Andricopulo AD (2017) Targeting cysteine proteases in trypanosomatid disease drug discovery. Pharmacol Ther 180:49–61. https://doi.org/10.1016/j.pharmthera.2017.06.004

    Article  CAS  Google Scholar 

  6. Di Chio C, Previti S et al (2020) Development of novel benzodiazepine-based peptidomimetics as inhibitors of rhodesain from trypanosoma brucei rhodesiense. ChemMedChem 15:995–1001. https://doi.org/10.1002/cmdc.202000158

    Article  CAS  Google Scholar 

  7. Engel JC, Doyle PS, Hsieh I, McKerrow JH (1998) Cysteine protease inhibitors cure an experimental Trypanosoma cruzi infection. J Exp Med 188:725–734. https://doi.org/10.1084/jem.188.4.725

    Article  CAS  Google Scholar 

  8. Fujii N, Mallari JP, Hansell EJ et al (2005) Discovery of potent thiosemicarbazone inhibitors of rhodesain and cruzain. Bioorg Med Chem Lett 15:121–123. https://doi.org/10.1016/j.bmcl.2004.10.023

    Article  CAS  Google Scholar 

  9. Ehmke V, Winkler E et al (2013) Optimization of triazine nitriles as rhodesain inhibitors: structure-activity relationships, bioisosteric imidazopyridine nitriles, and X-ray crystal structure analysis with human cathepsin L. ChemMedChem 8:967–975. https://doi.org/10.1002/cmdc.201300112

    Article  CAS  Google Scholar 

  10. Neitz RJ, Bryant C et al (2015) Tetrafluorophenoxymethyl ketone cruzain inhibitors with improved pharmacokinetic properties as therapeutic leads for Chagas’ disease. Bioorg Med Chem Lett 25:4834–4837. https://doi.org/10.1016/j.bmcl.2015.06.066

    Article  CAS  Google Scholar 

  11. Makhoba XH, Viegas C Jr, Mosa RA, Viegas FPD, Pooe OJ (2020) potential impact of the multi-target drug approach in the treatment of some complex diseases. Drug Des Devel Ther 14:3235–3249. https://doi.org/10.2147/DDDT.S257494

    Article  CAS  Google Scholar 

  12. Khare S, Nagle AS et al (2016) Proteasome inhibition for treatment of leishmaniasis, Chagas disease and sleeping sickness. Nature 537:229–233. https://doi.org/10.1038/nature19339

    Article  CAS  Google Scholar 

  13. Lionta E, Spyrou G, Vassilatis DK, Cournia Z (2014) Structure-based virtual screening for drug discovery: principles, applications and recent advances. Curr Top Med Chem 14:1923–1938. https://doi.org/10.2174/1568026614666140929124445

    Article  CAS  Google Scholar 

  14. Homeyer N, Gohlke H (2012) Free energy calculations by the molecular mechanics poisson−boltzmann surface area method. Mol Inform 31:114–122. https://doi.org/10.1002/minf.201100135

    Article  CAS  Google Scholar 

  15. Allinger NL (1977) Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms. J Am Chem Soc 99:8127–8134. https://doi.org/10.1021/ja00467a001

    Article  CAS  Google Scholar 

  16. McGrath ME, Eakin AE, Engel JC, McKerrow JH, Craik CS, Fletterick RJ (1995) The crystal structure of cruzain: a therapeutic target for Chagas’ disease. J Mol Biol 247:251–259. https://doi.org/10.1006/jmbi.1994.0137

    Article  CAS  Google Scholar 

  17. Berman HM, Westbrook J et al (2000) The protein data bank. Nucleic Acids Res 28:235–242. https://doi.org/10.1093/nar/28.1.235

    Article  CAS  Google Scholar 

  18. Mooij WT, Verdonk ML (2005) General and targeted statistical potentials for protein-ligand interactions. Proteins 61:272–287. https://doi.org/10.1002/prot.20588

    Article  CAS  Google Scholar 

  19. Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727–748. https://doi.org/10.1006/jmbi.1996.0897

    Article  CAS  Google Scholar 

  20. Abraham MJ, van der Spoel D, Lindahl E, Hess B, Gromacs development team team (2016) GROMACS User Manual version 5.1.4

  21. Berendsen HJC, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91:43–56. https://doi.org/10.1016/0010-4655(95)00042-E

    Article  CAS  Google Scholar 

  22. Malde AK, Zuo L et al (2011) An automated force field topology builder (ATB) and repository: version 1.0. J Chem Theory Comput 7:4026–4037. https://doi.org/10.1021/ct200196m

    Article  CAS  Google Scholar 

  23. Stroet M, Caron B, Visscher KM, Geerke DP, Malde AK, Mark AE (2018) Automated topology builder version 3.0: prediction of solvation free enthalpies in water and hexane. J Chem Theory Comput 14:5834–5845. https://doi.org/10.1021/acs.jctc.8b00768

    Article  CAS  Google Scholar 

  24. Schmid N, Eichenberger AP et al (2011) Definition and testing of the GROMOS force-field versions 54A7 and 54B7. Eur Biophys J 40:843–856. https://doi.org/10.1007/s00249-011-0700-9

    Article  CAS  Google Scholar 

  25. Berweger CD, van Gunsteren WF, Müller-Plathe F (1995) Force field parametrization by weak coupling. Re-engineering SPC water Chem Phys Lett 232:429–436. https://doi.org/10.1016/0009-2614(94)01391-8

    Article  CAS  Google Scholar 

  26. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690. https://doi.org/10.1063/1.448118

    Article  CAS  Google Scholar 

  27. Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182–7190. https://doi.org/10.1063/1.328693

    Article  CAS  Google Scholar 

  28. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12%3c1463::AID-JCC4%3e3.0.CO;2-H

    Article  CAS  Google Scholar 

  29. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an Nṡlog(N) method for Ewald sums in large systems. J Chem Phys 98:10089. https://doi.org/10.1063/1.464397

    Article  CAS  Google Scholar 

  30. Kumari R, Kumar R, Lynn A (2014) g_mmpbsa—A GROMACS tool for high-throughput MM-PBSA calculations. J Chem Info Model 54:1951–1962. https://doi.org/10.1021/ci500020m

    Article  CAS  Google Scholar 

  31. Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7:42717. https://doi.org/10.1038/srep42717

    Article  Google Scholar 

  32. Giraldo C, Gómez S et al (2016) Insight into the mechanism of the Michael reaction. ChemPhysChem 17:2022–2034. https://doi.org/10.1002/cphc.201600166

    Article  CAS  Google Scholar 

  33. Wishart DS, Knox C et al (2008) DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res 36:D901–D906. https://doi.org/10.1093/nar/gkm958

    Article  CAS  Google Scholar 

  34. Lang DK, Kaur R, Arora R, Saini B, Arora S (2020) Nitrogen-containing heterocycles as anticancer agents: an overview. Anticancer Agents Med Chem 20:2150–2168. https://doi.org/10.2174/1871520620666200705214917

    Article  CAS  Google Scholar 

  35. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:3–25. https://doi.org/10.1016/S0169-409X(96)00423-1

    Article  CAS  Google Scholar 

  36. Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 45:2615–2623. https://doi.org/10.1021/jm020017n

    Article  CAS  Google Scholar 

  37. Martin YC (2005) A bioavailability score. J Med Chem 48:3164–3170. https://doi.org/10.1021/jm0492002

    Article  CAS  Google Scholar 

  38. Ditzinger F, Price DJ et al (2019) Lipophilicity and hydrophobicity considerations in bioenabling oral formulations approaches—a PEARRL review. J Pharm Pharmacol 71:464–482. https://doi.org/10.1111/jphp.12984

    Article  CAS  Google Scholar 

  39. Ertl P, Schuffenhauer A (2009) Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. J Cheminformatics 1:8. https://doi.org/10.1186/1758-2946-1-8

    Article  CAS  Google Scholar 

  40. Ferreira RS, Simeonov A et al (2010) Complementarity between a docking and a high- throughput screen in discovering new cruzain inhibitors. J Med Chem 53:4891–4905. https://doi.org/10.1021/jm100488w

    Article  CAS  Google Scholar 

  41. Silva LR, Guimarães AS et al (2021) Computer-aided design of 1,4-naphthoquinone-based inhibitors targeting cruzain and rhodesain cysteine proteases. Bioorg Med Chem 41:116213. https://doi.org/10.1016/j.bmc.2021.116213

    Article  CAS  Google Scholar 

  42. Ogungbe IV, Setzer WN (2009) Comparative molecular docking of antitrypanosomal natural products into multiple Trypanosoma brucei drug targets. Molecules 14(4):1513–1536. https://doi.org/10.3390/molecules14041513

    Article  CAS  Google Scholar 

  43. de Souza ML, de Oliveira Rezende C et al (2020) Discovery of potent, reversible, and competitive cruzain inhibitors with trypanocidal activity: a structure-based drug design approach. J Chem Inf Model 60:1028–1041. https://doi.org/10.1021/acs.jcim.9b00802

    Article  CAS  Google Scholar 

  44. Wiggers HJ, Rocha JR et al (2013) Non-peptidic cruzain inhibitors with trypanocidal activity discovered by virtual screening and in vitro assay. PLoS Negl Trop Dis 7:e2370. https://doi.org/10.1371/journal.pntd.0002370

    Article  CAS  Google Scholar 

  45. Ferreira RAA, Pauli I et al (2019) Structure-based and molecular modeling studies for the discovery of cyclic imides as reversible cruzain inhibitors with potent anti-trypanosoma cruzi activity. Front Chem 7:798. https://doi.org/10.3389/fchem.2019.00798

    Article  CAS  Google Scholar 

  46. Rogers KE, Keränen H et al (2012) Novel cruzain inhibitors for the treatment of Chagas’ disease. Chem Biol Drug Des 80:398–405. https://doi.org/10.1111/j.1747-0285.2012.01416.x

    Article  CAS  Google Scholar 

Download references

Funding

This research work is partially supported by the Chulabhorn Royal Academy research grant project code 631-CS01. This research work is supported in part by the grant from the Center of Excellence on Environmental Health and Toxicology (EHT), OPS, Ministry of Higher Education, Science Research and Innovation. The authors would like to thank Center of Excellence on Environmental Health and Toxicology (EHT), OPS, Ministry of Higher Education, Science, Research and Innovation for their excellent technical support.

Author information

Authors and Affiliations

Authors

Contributions

The experimental procedures, planning and analysis were performed by CE, CZ, TS and ASB. The manuscript draft was prepared and reviewed by CE, CB, RS, WN, TS, SR and ASB. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Chatchakorn Eurtivong.

Ethics declarations

Conflict of interest

All authors declare no competing interests.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 19924 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eurtivong, C., Zimmer, C., Schirmeister, T. et al. A structure-based virtual high-throughput screening, molecular docking, molecular dynamics and MM/PBSA study identified novel putative drug-like dual inhibitors of trypanosomal cruzain and rhodesain cysteine proteases. Mol Divers (2023). https://doi.org/10.1007/s11030-023-10600-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11030-023-10600-2

Keywords

Navigation