Skip to main content
Log in

Catalyst-free synthesis of acenaphthoindolopyrimidine derivatives

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

A one pot three component reaction of acenaphthoquinone, barbituric acid/thiobarbituric acid/N,N-dimethyl barbituric acid and arylamines in ethanol for the synthesis of acenaphthoindolopyrimidine derivatives is reported. The reactions take place without a catalyst and gentle conditions. This method is facile and has some benefits such as, readily available starting materials, green solvent, catalyst-free, no column chromatographic purification and good to high yields.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Saher L, Makhloufi-Chebli M, Dermeche L, Dermeche S, Boutemeur-Khedis B, Rabia CH, Hamdi M, Silva A (2018) 10-(4-Hydroxy-6-methyl-2-oxo-2H-pyran-3-yl)-3-methyl 1H,10H-pyrano[4,3-b]chromen-1-ones from a pseudo-multicomponent reaction and evaluation of their antioxidant activity. Tetrahedron 74:872–879. https://doi.org/10.1016/j.tet.2018.01.009

    Article  CAS  Google Scholar 

  2. Dabiri M, Tisseh ZN, Bahramnejad M, Bazgir A (2011) Sonochemical multi-component synthesis of spirooxindoles. Ultrason Sonochem 18:1153–1159. https://doi.org/10.1016/j.ultsonch.2010.12.004

    Article  CAS  PubMed  Google Scholar 

  3. Hasaninejad A, Zare A, Shekouhy M (2011) Highly efficient synthesis of triazolo[1,2-a]indazole-triones and novel spiro triazolo[1,2-a]indazole-tetraones under solvent-free conditions. Tetrahedron 67:390–400. https://doi.org/10.1016/j.tet.2010.11.029

    Article  CAS  Google Scholar 

  4. Maleki B, Esmailian G, Tayebee R (2015) One-pot synthesis of polysubstituted imidazoles catalyzed by an ionic liquid. Org Prep Proc Int 47:461–472. https://doi.org/10.1080/00304948.2015.1088757

    Article  CAS  Google Scholar 

  5. Beyrati M, Forutan M, Hasaninejad A, Rakovský E, Babaei S, Maryamabadi A, Mohebbi GH (2017) One-pot, four-component synthesis of spiroindoloquinazoline derivatives as phospholipase inhibitors. Tetrahedron 73:5144–5152. https://doi.org/10.1016/j.tet.2017.07.005

    Article  CAS  Google Scholar 

  6. Zhu J, Bienayme H (2005) Multicomponent reactions. Wiley-VCH, Weinheim

    Book  Google Scholar 

  7. Harichandran G, Amalraj S, Shanmugam P (2018) Amberlite IRA-400 Cl resin catalyzed synthesis of secondary amines and transformation into N-((1Hindol-3-yl) (heteroaryl) methyl)-N-heteroaryl benzenamines and bis-indoles via multicomponent reaction. J Saudi Chem Soc 22:208–217

    Article  CAS  Google Scholar 

  8. Zhu G, Huang D, Cao W, Song H, You A (2018) An ab initio study and the corresponded instructing improvement of the multicomponent reaction consisted of acetone, aniline and 4-hydrocoumarine. Comput Theor Chem 1145:22–27. https://doi.org/10.1016/j.comptc.2018.10.010

    Article  CAS  Google Scholar 

  9. Wiemann J, Heller L, Csuk R (2018) An access to a library of novel triterpene derivatives with a promising pharmacological potential by Ugi and Passerini multicomponent reactions. Eur J Med Chem 150:176–194. https://doi.org/10.1016/j.ejmech.2018.02.060

    Article  CAS  PubMed  Google Scholar 

  10. Bayat M, Hosseini F, Notash B (2018) Stereoselective synthesis of indenone-fused heterocyclic compounds via a one-pot four-component reaction. Tetrahedron Lett 73:1196–1204. https://doi.org/10.1016/j.tet.2017.01.024

    Article  CAS  Google Scholar 

  11. Lazareno S, Popham A, Birdsall NJ (2002) Analogs of win 62,577 define a second allosteric site on muscarinic receptors. Mol Pharmacol 62:1492–1505. https://doi.org/10.1124/mol.62.6.1492

    Article  CAS  PubMed  Google Scholar 

  12. Shaaban MR, Saleh TS, Mayhoub AS, Farag AM (2011) Single step synthesis of new fused pyrimidine derivatives and their evaluation as potent Aurora-A kinase inhibitors. Eur J Med Chem 46:3690–3695. https://doi.org/10.1016/j.ejmech.2011.05.033

    Article  CAS  PubMed  Google Scholar 

  13. Palkar M, Noolvi M, Sankangoud R, Maddi V, Gadad A, Nargund LV (2010) Synthesis and antibacterial activity of a novel series of 2,3-diaryl-substituted-imidazo[2,1-b] benzothiazole derivatives. Arch Pharm 343:353–359. https://doi.org/10.1002/ardp.200900260

    Article  CAS  Google Scholar 

  14. Algul O, Meric A, Polat S, Didem YN, Serin MS (2009) Comparative studies on conventional and microwave-assisted synthesis of a series of 2,4-di and 2,3,4-trisubstituted benzimidazo[1,2-a]pyrimidines and their antimicrobial activities. Cent Eur J Chem 7:337–342. https://doi.org/10.2478/s11532-009-0023-1

    Article  CAS  Google Scholar 

  15. Murineddu G, Loriga G, Gavini E, Peanna AT, Mule AC, Pinna GA (2001) Synthesis and analgesic-antiinflammatory activities of novel acylarylhydrazones with a 5-phenyl-4-R-3-pyrrolyl-acyl moiety. Arch Pharm 334:393–398. https://doi.org/10.1002/1521-4184(200112)334

    Article  CAS  Google Scholar 

  16. Lehuede J, Fauconneau B, Barrier L, Ourakow M, Piriou A, Vierfond JM (1999) Synthesis and antioxidant activity of new tetraarylpyrroles. Eur J Med Chem 34:991–996. https://doi.org/10.1016/s0223-5234(99)00111-7

    Article  CAS  PubMed  Google Scholar 

  17. Khan I, Zaib S, Ibrar A (2020) New frontiers in the transition-metal-free synthesis of heterocycles from alkynoates: an overview and current status. Org Chem Front 7:3734–3791. https://doi.org/10.1039/D0QO00698J

    Article  CAS  Google Scholar 

  18. Zhang YC, Jiang F, Shi F (2020) Organocatalytic asymmetric synthesis of indole-based chiral heterocycles: strategies, reactions, and outreach. Acc Chem Res 53(2):425–446. https://doi.org/10.1021/acs.accounts.9b00549

    Article  CAS  PubMed  Google Scholar 

  19. Sheng FT, Wang JY, Tan W, Zhang YC, Shi F (2020) Progresses in organocatalytic asymmetric dearomatization reactions of indole derivatives. Org Chem Front 7:3967–3998. https://doi.org/10.1039/D0QO01124J

    Article  CAS  Google Scholar 

  20. Wang Y, Cobo AA, Franz AK (2021) Recent advances in organocatalytic asymmetric multicomponent cascade reactions for enantioselective synthesis of spirooxindoles. Org Chem Front 8:4315–4348. https://doi.org/10.1039/D1QO00220A

    Article  CAS  Google Scholar 

  21. Michaudel Q, Thevenet D, Baran PS (2012) Intermolecular Rittertype C-H amination of unactivated sp3 carbons. J Am Chem Soc 134:2547–2550. https://doi.org/10.1021/ja212020b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Iglesias A, Alvarez R, Lea AR, Muniz K (2012) Palladium-catalyzed intermolecular C(sp3)–H amidation. Angew Chem Int Ed 51:2225–2228. https://doi.org/10.1002/anie.201108351

    Article  CAS  Google Scholar 

  23. Chen WL, Cai YF, Fu X, Liu XH, Liu LL, Feng XM (2011) Enantioselective one-pot synthesis of 2-amino-4-(indol-3-yl)-4Hchromenes. Org Lett 13:4910–4913. https://doi.org/10.1021/ol2019949

    Article  CAS  PubMed  Google Scholar 

  24. Shi F, Xing GJ, Zhu RY, Tan W, Tu SJ (2013) A catalytic asymmetric isatin-involved Povarov reaction: diastereo- and enantioselective construction of spiro[indolin-3,2-quinoline] scaffold. Org Lett 15:128–131. https://doi.org/10.1021/ol303154k

    Article  CAS  PubMed  Google Scholar 

  25. Bayat M, Amiri Z (2018) Catalyst-free synthesis of tetrahydroacenaphtho[1,2-b]indolone derivatives via one-pot four-component reaction. J Heterocycl Chem 55:1346–1351. https://doi.org/10.1002/jhet.3167

    Article  CAS  Google Scholar 

  26. Yavari I, Baoosi L, Halvagar MR (2017) A convenient synthesis of fused tetrahydroazocines from acenaphthylene-1,2-dione, proline, and acetylenic esters. Mol Divers 21:257–263. https://doi.org/10.1055/s-0036-1591855

    Article  CAS  PubMed  Google Scholar 

  27. Chen XB, Luo TB, Gou GZ, Wang J, Liu W, Lin J (2015) selective synthesis of acenaphtho[1,2-b]indole derivatives via tandem regioselective aza-ene addition/N cyclization/sN1 type reaction. Asian J Org Chem 4:921–928. https://doi.org/10.1002/ajoc.201500159

    Article  CAS  Google Scholar 

  28. Kumar RS, Osman H, Perumal S, Menéndez C, Afshar Ali M, Ismail R, Choon TS (2011) A facile three-component [3+2] cycloaddition/annulation domino protocol for the regio- and diastereoselective synthesis of novel penta- and hexacyclic cage systems, involving the generation of two heterocyclic rings and five contiguous stereocenters. Tetrahedron 67:3132–3139. https://doi.org/10.1016/j.tet.2011.02.058

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support of this research from Imam Khomeini International University, Iran is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Bayat.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 5492 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kakavand, N., Bayat, M. & Bayat, Y. Catalyst-free synthesis of acenaphthoindolopyrimidine derivatives. Mol Divers 27, 1785–1793 (2023). https://doi.org/10.1007/s11030-022-10531-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-022-10531-4

Keywords

Navigation